Suppr超能文献

A rapidly activating delayed rectifier K+ channel in rabbit sinoatrial node cells.

作者信息

Ito H, Ono K

机构信息

Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

出版信息

Am J Physiol. 1995 Aug;269(2 Pt 2):H443-52. doi: 10.1152/ajpheart.1995.269.2.H443.

Abstract

The single-channel current of the delayed rectifier K+ current (IK) was recorded in rabbit sinoatrial node cells. In the cell-attached patch, depolarization from -70 mV to potentials more positive than -50 mV activated the IK channel while repolarization deactivated it. The single-channel conductance was 7.8 pS for the outward current and 10.8 pS for the inward current (n = 6). The steady-state open probability (NPo) was maximum at around -30 mV and markedly decreased at more positive potentials. On repolarization from positive potentials, the channel was initially closed and then rapidly opened. The ensemble average showed an initial rise to a peak followed by the deactivation time course. Because the channel events were completely blocked by E-4031, the drug-sensitive component was examined in the whole cell current. The steady-state current-voltage relation of the drug-sensitive current showed a marked negative slope at potentials more positive than -10 mV. Upon repolarization, the drug-sensitive current initially increased (removal of inactivation) to the peak of the outward tail current, which was in agreement with the ensemble average of the single-channel current. We conclude that IK in the sinoatrial node cells is largely composed of the rapidly activating IK (IK,r) channels and that the inward rectification of IK,r, which is more marked than had been assumed in previous studies, is due to the decrease in NPo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验