Warren M J, Gul S, Aplin R T, Scott A I, Roessner C A, O'Grady P, Shoolingin-Jordan P M
Department of Medical Genetics, University of London, U.K.
Biochemistry. 1995 Sep 5;34(35):11288-95. doi: 10.1021/bi00035a038.
Porphobilinogen deaminase from Escherichia coli becomes progressively more susceptible to inactivation by the thiophilic reagent N-ethylmaleimide (NEM) as the catalytic cycle proceeds through the enzyme-intermediate complexes ES, ES2, ES3, and ES4. Site-directed mutagenesis of potentially reactive cysteines has been used to identify cysteine-134 as the key residue that becomes modified by the reagent and leads to inactivation. Since cysteine-134 is buried at the interface between domains 2 and 3 of the E. coli deaminase molecule, the observations suggest that a stepwise conformational change occurs between these domains during each stage of tetrapyrrole assembly. Interestingly, mutation of the invariant active-site cysteine-242 to serine leads to an enzyme with up to a third of the catalytic activity found in the wild-type enzyme. Electrospray mass spectrometry indicates that serine can substitute for cysteine as the dipyrromethane cofactor attachment site.