Suppr超能文献

大腿肌肉横截面积的人体测量估计

Anthropometric estimation of thigh muscle cross-sectional area.

作者信息

Housh D J, Housh T J, Weir J P, Weir L L, Johnson G O, Stout J R

机构信息

Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center 68583-0740, USA.

出版信息

Med Sci Sports Exerc. 1995 May;27(5):784-91.

PMID:7674885
Abstract

The purpose of this investigation was to derive and validate circumference and skinfold equations for estimating the anatomical cross-sectional area (CSA) of the quadriceps, hamstrings, and total thigh muscles. Forty-three adult male (mean age +/- SD = 25 +/- 5 yr) volunteers underwent magnetic resonance imaging (MRI) to determine the CSA of the thigh muscles at the midfemur level as well as midthigh circumference and anterior thigh skinfold assessment. Multiple regression analyses were used to derive equations for predicting quadriceps, hamstrings, and total thigh muscle CSA of the dominant limb from the anthropometric dimensions on a random sample of 30 of the subjects. Cross-validation (CV) analyses were performed for each equation on: (a) the nondominant thigh of the derivation group (N = 30); (b) the dominant thigh of the CV group (N = 13); and (c) the nondominant thigh of the CV group (N = 13). The CV total error values for the quadriceps, hamstrings, and total thigh muscle CSA ranged from 5.4 to 14.4, 3.3 to 5.5, and 10.0 to 25.4 cm2, respectively. The anthropometric equations are recommended for one-time estimates of muscle CSA values in healthy, well-nourished young adult males when more sophisticated procedures are not available.

摘要

本研究的目的是推导并验证用于估计股四头肌、腘绳肌和大腿总肌肉解剖横截面积(CSA)的周长和皮褶方程。43名成年男性(平均年龄±标准差 = 25±5岁)志愿者接受了磁共振成像(MRI),以确定股骨中段水平的大腿肌肉CSA,以及大腿中部周长和大腿前部皮褶评估。在30名受试者的随机样本中,使用多元回归分析从人体测量维度推导预测优势肢体股四头肌、腘绳肌和大腿总肌肉CSA的方程。对每个方程进行交叉验证(CV)分析:(a)推导组的非优势大腿(N = 30);(b)CV组的优势大腿(N = 13);以及(c)CV组的非优势大腿(N = 13)。股四头肌、腘绳肌和大腿总肌肉CSA的CV总误差值分别为5.4至14.4、3.3至5.5和10.0至25.4 cm²。当没有更复杂的程序时,建议使用人体测量方程对健康、营养良好的年轻成年男性的肌肉CSA值进行一次性估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验