Suppr超能文献

用于无模态完成的曲率约束线理论

The theory of the curvature-constraint line for amodal completion.

作者信息

Takeichi H, Nakazawa H, Murakami I, Shimojo S

机构信息

Information Science Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.

出版信息

Perception. 1995;24(4):373-89. doi: 10.1068/p240373.

Abstract

Amodal completion of partly occluded figures is analyzed as natural computation. Here amodal completion is shown to consist of four subproblems: representation, parsing, correspondence, and interpolation. Second, each problem is shown to be basically solvable on the basis of the generic-viewpoint assumption. It is also argued that the interpolation problem might be the key problem because of mutual interdependence among the subproblems. Third, a theory is described for the interpolation problem, in which the generic-viewpoint assumption and the curvature-consistency assumption are presumed. The generic-viewpoint assumption entails that the orientation and the curvature should not change at the point of occlusion. The curvature-consistency assumption entails that the hidden contour should have the minimum number of inflections to maintain continuity in orientation and curvature. The shape of the interpolated contour represented qualitatively in terms of the number of inflections can uniquely be determined when the location of the terminators and local orientation and curvature of the visible contours at the terminators are given. Fourth, it is shown in an instant psychophysics that the theory is highly consistent with human performance.

摘要

部分遮挡图形的无模态完成被分析为自然计算。在此,无模态完成被证明由四个子问题组成:表示、解析、对应和插值。其次,基于通用视角假设,每个问题都被证明基本上是可解的。还认为插值问题可能是关键问题,因为子问题之间相互依存。第三,描述了一种关于插值问题的理论,其中假定了通用视角假设和曲率一致性假设。通用视角假设意味着在遮挡点处方向和曲率不应改变。曲率一致性假设意味着隐藏轮廓应具有最少数量的拐点,以保持方向和曲率的连续性。当给出终止点的位置以及终止点处可见轮廓的局部方向和曲率时,根据拐点数量定性表示的插值轮廓形状可以唯一确定。第四,在即时心理物理学中表明,该理论与人类表现高度一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验