Suppr超能文献

Determination of current density distributions generated by electrical stimulation of the human cerebral cortex.

作者信息

Nathan S S, Sinha S R, Gordon B, Lesser R P, Thakor N V

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205.

出版信息

Electroencephalogr Clin Neurophysiol. 1993 Mar;86(3):183-92. doi: 10.1016/0013-4694(93)90006-h.

Abstract

With the use of a 3-dimensional finite element model of the human brain based on structural data from MRI scans, we simulated patterns of current flow in the cerebral hemisphere with different types of electrical stimulation. Five different tissue types were incorporated into the model based on conductivities taken from the literature. The boundary value problem derived from Laplace's equation was solved with a quasi-static approximation. Transcranial electrical stimulation with scalp electrodes was poorly focussed and required high levels of current for stimulation of the cortex. Direct cortical stimulation with bipolar (adjacent) electrodes was found to be very effective in producing localized current flows. Unipolar cortical stimulation (with a more distant reference electrode) produced higher current densities at the same stimulating current as did bipolar stimulation, but stimulated a larger region of the cortex. With the simulated electrodes resting on the pia-arachnoid, as usually occurs clinically, there was significant shunting of the current (7/8 of the total current) through the CSF. Possible changes in electrodes and stimulation parameters that might improve stimulation procedures are considered.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验