Lewis R S, Ross P E, Cahalan M D
Department of Physiology and Biophysics, University of California, Irvine 92717.
J Gen Physiol. 1993 Jun;101(6):801-26. doi: 10.1085/jgp.101.6.801.
We have used whole-cell and perforated-patch recording techniques to characterize volume-sensitive Cl- channels in T and B lymphocytes. Positive transmembrane osmotic pressure (intracellular osmolality > extracellular osmolality) triggers the slow induction of a Cl- conductance. Membrane stretch caused by cellular swelling may underlie the activation mechanism, as moderate suction applied to the pipette interior can reversibly oppose the induction of Cl- current by an osmotic stimulus. Intracellular ATP is required for sustaining the Cl- current. With ATP-free internal solutions, the inducibility of Cl- current declines within minutes of whole-cell recording, while in whole-cell recordings with ATP or in perforated-patch experiments, the current can be activated for at least 30 min. The channels are anion selective with a permeability sequence of I- > SCN- > NO3-, Br- > Cl- > MeSO3- > acetate, propionate > ascorbate > aspartate and gluconate. GCl does not show voltage- and time-dependent gating behavior at potentials between -100 and +100 mV, but exhibits moderate outward rectification in symmetrical Cl- solutions. Fluctuation analysis indicates a unitary chord conductance of approximately 2 pS at -80 mV in the presence of symmetrical 160 mM Cl-. The relationship of mean current to current variance during the osmotic activation of Cl- current implies that each cell contains on the order of 10(4) activatable Cl- channels, making it the most abundant ion channel in lymphocytes yet described. The current is blocked in a voltage-dependent manner by DIDS and SITS (Ki = 17 and 89 microM, respectively, at +40 mV), the degree of blockade increasing with membrane depolarization. The biophysical and pharmacological properties of this Cl- channel are consistent with a role in triggering volume regulation in lymphocytes exposed to hyposmotic conditions.
我们运用全细胞和穿孔膜片钳记录技术来表征T淋巴细胞和B淋巴细胞中的容量敏感性氯离子通道。正向跨膜渗透压(细胞内渗透压>细胞外渗透压)会引发氯离子电导的缓慢诱导。细胞肿胀引起的膜拉伸可能是激活机制的基础,因为对移液管内部施加适度吸力可可逆地对抗渗透压刺激诱导的氯离子电流。维持氯离子电流需要细胞内ATP。使用无ATP的细胞内溶液时,全细胞记录几分钟内氯离子电流的诱导能力就会下降,而在含有ATP的全细胞记录或穿孔膜片钳实验中,电流可被激活至少30分钟。这些通道具有阴离子选择性,通透顺序为I->SCN->NO3->Br->Cl->MeSO3->乙酸盐、丙酸盐>抗坏血酸盐>天冬氨酸盐和葡萄糖酸盐。在-100至+100 mV的电位范围内,GCl不表现出电压和时间依赖性门控行为,但在对称氯离子溶液中表现出适度的外向整流。波动分析表明,在存在对称的160 mM Cl-的情况下,-80 mV时的单通道弦电导约为2 pS。氯离子电流渗透激活过程中平均电流与电流方差的关系表明,每个细胞中约有10(4)个可激活的氯离子通道,这使其成为迄今为止所描述的淋巴细胞中最丰富的离子通道。该电流在+40 mV时被DIDS和SITS以电压依赖性方式阻断(Ki分别为17和89 microM),阻断程度随膜去极化而增加。这种氯离子通道的生物物理和药理学特性与在暴露于低渗条件下的淋巴细胞中触发容量调节的作用一致。