Oller A R, Fijalkowska I J, Schaaper R M
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.
Mutat Res. 1993 Oct;292(2):175-85. doi: 10.1016/0165-1161(93)90145-p.
The Escherichia coli dnaE and dnaQ genes encode, respectively, the alpha (polymerase) and epsilon (proofreading) subunits of DNA polymerase III. Mutations in these genes resulting in mutator or antimutator phenotypes provide important tools to understand the mechanisms by which mutations occur. One way to isolate such strains is the use of papillation assays. We used one such assay based on the reversion of the galK2 allele in cells grown on MacConkey-Gal plates. Here, we describe the identification of the galK2 mutation and its possible reversion pathways, and the characterization of 7 mutators isolated using this system. 1 mutator resided in dnaE and 6 in dnaQ. Sequencing of the galK2 allele revealed a G.C-->T.A transversion at base pair 571 that changed a glu codon (GAA) to a stop codon (TAA). The analysis of 319 revertants showed that a Gal+ phenotype can be achieved by A.T-->G.C transition, A.T-->T.A transversion and A.T-->C.G transversion. We characterized the mutator phenotypes of the newly isolated mutators by determining (i) their mutation frequencies to resistance to rifampicin and nalidixic acid in both wild-type and mutL backgrounds, (ii) their temperature sensitivity and medium dependence and (iii) their mutational specificity (by analyzing the nature of galK revertants). Based on the genomic locations of their mutations, specificity of reversion pathways and magnitude of mutator effects, the mutators can be grouped into 3 classes. These classes may represent different mutational mechanisms that include defective base insertion, defective proofreading and interference with the postreplicative mismatch-repair system.
大肠杆菌的dnaE和dnaQ基因分别编码DNA聚合酶III的α(聚合酶)和ε(校对)亚基。这些基因中的突变导致突变体或抗突变体表型,为理解突变发生的机制提供了重要工具。分离此类菌株的一种方法是使用乳头形成试验。我们使用了一种基于在麦康凯 - 半乳糖平板上生长的细胞中galK2等位基因回复突变的试验。在此,我们描述了galK2突变的鉴定及其可能的回复途径,以及使用该系统分离的7个突变体的特征。1个突变体位于dnaE中,6个位于dnaQ中。galK2等位基因的测序揭示了第571个碱基对处的G.C→T.A颠换,该颠换将一个谷氨酰胺密码子(GAA)变为一个终止密码子(TAA)。对319个回复子的分析表明,通过A.T→G.C转换、A.T→T.A颠换和A.T→C.G颠换可以实现Gal +表型。我们通过确定(i)它们在野生型和mutL背景下对利福平及萘啶酸抗性的突变频率,(ii)它们的温度敏感性和培养基依赖性,以及(iii)它们的突变特异性(通过分析galK回复子的性质)来表征新分离突变体的突变体表型。根据其突变的基因组位置、回复途径的特异性和突变体效应的大小,这些突变体可分为3类。这些类别可能代表不同的突变机制,包括碱基插入缺陷型、校对缺陷型和对复制后错配修复系统的干扰。