Arnold G E, Manchester J I, Townsend B D, Ornstein R L
Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, WA 99352.
J Biomol Struct Dyn. 1994 Oct;12(2):457-74. doi: 10.1080/07391102.1994.10508751.
Hinge-bending in T4 lysozyme has been inferred from single amino acid mutant crystalline allomorphs by Matthews and coworkers. This raises an important question: are the different conformers in the unit cell artifacts of crystal packing forces, or do they represent different solution state structures? The objective of this theoretical study is to determine whether domain motions and hinge-bending could be simulated in T4 lysozyme using molecular dynamics. An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. Molecular dynamics calculations were computed using the Discover software package (Biosym Technologies). All hydrogen atoms were modeled explicitly with the inclusion of all 152 crystallographic waters at a temperature of 300 K. The native T4 lysozyme molecular dynamics simulation demonstrated hinge-bending in the protein. Relative domain motions between the N-terminal and C-terminal domains were evident. The enzyme hinge bending sites resulted from small changes in backbone atom conformations over several residues rather than rotation about a single bound. Two hinge foci were found in the simulation. One locus comprises residues 8-14 near the C-terminal of the A helix; the other site, residues 77-83 near the C-terminal of the C helix. Comparison of several snapshot structures from the dynamics trajectory clearly illustrates domain motions between the two lysozyme lobes. Time correlated atomic motions in the protein were analyzed using a dynamical cross-correlation map. We found a high degree of correlated atomic motions in each of the domains and, to a lesser extent, anticorrelated motions between the two domains. We also found that the hairpin loop in the N-terminal lobe (residues 19-24) acted as a mobile 'flap' and exhibited highly correlated dynamic motions across the cleft of the active site, especially with residue 142.
马修斯及其同事通过单个氨基酸突变体晶体同质多形体推断出T4溶菌酶中存在铰链弯曲现象。这引发了一个重要问题:晶胞中不同的构象是晶体堆积力的人为产物,还是代表不同的溶液态结构?这项理论研究的目的是确定能否使用分子动力学在T4溶菌酶中模拟结构域运动和铰链弯曲。本文展示了对164个氨基酸的T4溶菌酶进行400皮秒分子动力学模拟的分析。分子动力学计算使用Discover软件包(Biosym Technologies公司)完成。所有氢原子都进行了明确建模,并纳入了所有152个结晶水,模拟温度为300K。天然T4溶菌酶的分子动力学模拟表明该蛋白质中存在铰链弯曲。N端和C端结构域之间存在明显的相对结构域运动。酶的铰链弯曲位点是由几个残基上主链原子构象的微小变化导致的,而非围绕单个键的旋转。在模拟中发现了两个铰链焦点。一个位点包含A螺旋C端附近的8 - 14位残基;另一个位点是C螺旋C端附近的77 - 83位残基。对动力学轨迹中几个快照结构的比较清楚地说明了两个溶菌酶叶之间的结构域运动。使用动态交叉相关图分析了蛋白质中时间相关的原子运动。我们发现每个结构域中都存在高度相关的原子运动,并且在较小程度上,两个结构域之间存在反相关运动。我们还发现N端叶中的发夹环(19 - 24位残基)起到了可移动的“瓣”的作用,并且在活性位点裂隙处表现出高度相关的动态运动,特别是与142位残基相关。