Gatti M, Bonaccorsi S, Pimpinelli S
Istituto Pasteur, Fondazione Cenci-Bolognetti, Rome, Italy.
Methods Cell Biol. 1994;44:371-91. doi: 10.1016/s0091-679x(08)60924-3.
The repertoire of cytological procedures described in the present paper permits full analysis of brain neuroblast chromosomes. Moreover, if brains are cultured for 13 hr in the presence of 5-bromo-2'-deoxy-uridine, our fixation and Hoechst staining protocols allow visualization of sister chromatid differentiation and the scoring of sister chromatid exchanges (Gatti et al., 1979). Finally, we note that our cytological procedures can be successfully employed for preparation and staining of gonial cells of both sexes and male meiotic chromosomes (Ripoll et al., 1985; our unpublished results). Good chromosome preparations of female meiosis are obtained with the procedure described by Davring and Sunner (1977, 1979), Nokkala and Puro (1976), and Puro and Nokkala (1977). In this chapter, we have focused on the organization and behavior of Drosophila mitotic chromosomes, describing a repertoire of cytological techniques for neuroblast chromosome preparations. We have not considered the numerous excellent cytological procedures for embryonic chromosome preparations (for an example, see Foe and Alberts, 1985; Foe, 1989), because these chromosomes are usually less clearly defined than those of larval neuroblasts. In addition, we have not included the whole-mount and squashing techniques that allow chromosome visualization and spindle immunostaining of neuroblast cells (Axton et al., 1990; Gonzalez et al., 1990), male meiotic cells (Casal et al.. 1990; Cenci et al., 1994), and female meiotic cells (Theurkauf and Hawley. 1992), because the fixation methods used in these procedures alter chromosome morphology. Fixation methods for antibody staining result in poorly defined chromosomes, whereas the methanol/acetic acid fixation techniques, such as those described here, preserve very well chromosome morphology but remove a substantial fraction of chromosomal proteins. Thus, one of the major technical breakthroughs in Drosophila mitotic cytology will be the development of fixation procedures that maximize chromosomal quality with minimal removal of proteins. This will be particularly useful for precise immunolocalization of heterochromatic proteins, including those associated with the centromere.
本文所述的一系列细胞学方法可对脑成神经细胞染色体进行全面分析。此外,如果在5-溴-2'-脱氧尿苷存在的情况下将脑培养13小时,我们的固定和Hoechst染色方案可使姐妹染色单体分化可视化,并对姐妹染色单体交换进行计分(加蒂等人,1979年)。最后,我们注意到我们的细胞学方法可成功用于两性生殖细胞和雄性减数分裂染色体的制备和染色(里波尔等人,1985年;我们未发表的结果)。按照达夫林和桑纳(1977年、1979年)、诺卡拉和普罗(1976年)以及普罗和诺卡拉(1977年)所描述的方法可获得良好的雌性减数分裂染色体标本。在本章中,我们重点关注果蝇有丝分裂染色体的组织和行为,描述了一套用于成神经细胞染色体标本制备的细胞学技术。我们没有考虑众多用于胚胎染色体标本制备的出色细胞学方法(例如,见福伊和艾伯茨,1985年;福伊,1989年),因为这些染色体通常不如幼虫成神经细胞的染色体那样清晰明确。此外,我们没有纳入那些可使成神经细胞、雄性减数分裂细胞(卡萨勒等人,1990年;森西等人,1994年)和雌性减数分裂细胞(瑟考夫和霍利,1992年)的染色体可视化以及纺锤体免疫染色的整装和压片技术,因为这些方法中使用的固定方法会改变染色体形态。用于抗体染色的固定方法会导致染色体清晰度不佳,而本文所述的甲醇/乙酸固定技术虽能很好地保存染色体形态,但会去除相当一部分染色体蛋白。因此,果蝇有丝分裂细胞学的一项主要技术突破将是开发出能在最小程度去除蛋白质的情况下使染色体质量最大化的固定方法。这对于包括与着丝粒相关的异染色质蛋白的精确免疫定位将特别有用。