Suppr超能文献

用于估算正辛醇-水分配系数的原子/片段贡献法。

Atom/fragment contribution method for estimating octanol-water partition coefficients.

作者信息

Meylan W M, Howard P H

机构信息

Syracuse Research Corporation, NY 13210.

出版信息

J Pharm Sci. 1995 Jan;84(1):83-92. doi: 10.1002/jps.2600840120.

Abstract

Atom/fragment contribution values, used to estimate the log octanol-water partition coefficient (log P) of organic compounds, have been determined for 130 simple chemical substructures by a multiple linear regression of 1120 compounds with measured log P values. An additional 1231 compounds were used to determine 235 "correction factors" for various substructure orientations. The log P of a compound is estimated by simply summing all atom/fragment contribution values and correction factors occurring in a chemical structure. For the 2351 compound training set, the correlation coefficient (r2) for the estimated vs measured log P values is 0.98 with a standard deviation (SD) of 0.22 and an absolute mean error (ME) of 0.16 log units. This atom/fragment contribution (AFC) method was then tested on a separate validation set of 6055 measured log P values that were not used to derive the methodology and yielded an r2 of 0.943, an SD of 0.408, and an ME of 0.31. The method is able to predict log P within +/- 0.8 log units for over 96% of the experimental dataset of 8406 compounds. Because of the simple atom/fragment methodology, "missing fragments" (a problem encountered in other methods) do not occur in the AFC method. Statistically, it is superior to other comprehensive estimation methods.

摘要

用于估算有机化合物的正辛醇 - 水分配系数(log P)的原子/片段贡献值,已通过对1120种具有实测log P值的化合物进行多元线性回归,针对130个简单化学子结构进行了测定。另外1231种化合物用于确定各种子结构取向的235个“校正因子”。通过简单地将化学结构中出现的所有原子/片段贡献值和校正因子相加,即可估算化合物的log P。对于2351种化合物的训练集,估算的log P值与实测值的相关系数(r2)为0.98,标准差(SD)为0.22,绝对平均误差(ME)为0.16 log单位。然后,该原子/片段贡献(AFC)方法在一个单独的验证集上进行了测试,该验证集包含6055个未用于推导该方法的实测log P值,得到的r2为0.943,SD为0.408,ME为0.31。对于8406种化合物的实验数据集,该方法能够在超过96%的情况下将log P预测在±0.8 log单位范围内。由于原子/片段方法简单,AFC方法不会出现“缺失片段”(其他方法中遇到的问题)。从统计学角度来看,它优于其他综合估算方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验