Huuskonen J J, Villa A E, Tetko I V
Division of Pharmaceutical Chemistry, Department of Pharmacy, POB 56, FIN-00014 University of Helsinki, Finland.
J Pharm Sci. 1999 Feb;88(2):229-33. doi: 10.1021/js980266s.
The aim of this study was to determine the efficacy of atom-type electrotopological state indices for estimation of the octanol-water partition coefficient (log P) values in a set of 345 drug compounds or related complex chemical structures. Multilinear regression analysis and artificial neural networks were used to construct models based on molecular weights and atom-type electrotopological state indices. Both multilinear regression and artificial neural networks provide reliable log P estimations. For the same set of parameters, application of neural networks provided better prediction ability for training and test sets. The present study indicates that atom-type electrotopological state indices offer valuable parameters for fast evaluation of octanol-water partition coefficients that can be applied to screen large databases of chemical compounds, such as combinatorial libraries.
本研究的目的是确定原子类型电子拓扑状态指数在估算345种药物化合物或相关复杂化学结构的辛醇 - 水分配系数(log P)值方面的功效。使用多元线性回归分析和人工神经网络,基于分子量和原子类型电子拓扑状态指数构建模型。多元线性回归和人工神经网络都能提供可靠的log P估算值。对于同一组参数,神经网络在训练集和测试集上的预测能力更强。本研究表明,原子类型电子拓扑状态指数为快速评估辛醇 - 水分配系数提供了有价值的参数,可应用于筛选大型化合物数据库,如组合文库。