Suppr超能文献

Neural network analysis of quantitative histological factors to predict pathological stage in clinical stage I nonseminomatous testicular cancer.

作者信息

Moul J W, Snow P B, Fernandez E B, Maher P D, Sesterhenn I A

机构信息

Department of Surgery, Uniformed Service University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.

出版信息

J Urol. 1995 May;153(5):1674-7.

PMID:7715008
Abstract

A great deal of controversy exists in staging clinical stage I (CSI) nonseminomatous testicular germ cell tumors (NSGCT) because of the difficulty of distinguishing true stage I patients from those with occult retroperitoneal or distant metastases. The goal of this study was to quantitate primary tumor histologic factors and to apply these in a neural network computer analysis to determine if more accurate staging could be achieved. All available primary tumor histological slides from 93 CSI NSGCT patients were analyzed for vascular invasion (VI), lymphatic invasion (LI), tunical invasion (TI) and quantitative determination of percentage of the primary tumor composed of embryonal carcinoma (%EMB), yolk sac carcinoma (%YS), teratoma (%TER) and seminoma (%SEM). These patients had undergone retroperitoneal lymphadenectomy or follow-up such that final stage included 55 pathologic stage I and 38 stage II or higher lesions. Two investigators were provided identical datasets for neural network analysis; one experienced researcher used custom Kohonen and back propagation programs and one less experienced researcher used a commercially available program. For each experiment, a subset of data was used for training, and subsets were blindly used to test the accuracy of the networks. In the custom back propagation network, 86 of 93 patients were correctly staged for an overall accuracy of 92% (sensitivity 88%, specificity 96%). Using Neural Ware commercial software 74 of 93 (79.6%) were accurately staged when all 7 input variables were used; however, accuracy improved from 84.9 to 87.1% when 2, 4 and 5 of the variables were used. Quantitative histologic assessment of the primary tumor and neural network processing of data may provide clinically useful information in the CSI NSGCT population; however, the expertise of the network researcher appears to be important, and commercial software in general use may not be superior to standard regression analysis. Prospective testing of expert methodology should be instituted to confirm its utility.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验