Suppr超能文献

Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus.

作者信息

Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes C T

机构信息

Department of Neurology, University of Miami, FL, USA.

出版信息

Am J Hum Genet. 1995 May;56(5):1017-25.

Abstract

We have identified a novel mtDNA mutation in a 29-year-old man with myopathy and diabetes mellitus. This T-->C transition at mtDNA position 14709 alters an evolutionarily conserved nucleotide in the region specifying for the anticodon loop of the mitochondrial tRNA(Glu). The nt-14709 mutation was heteroplasmic but present at very high levels in the patient's muscle, white blood cells (WBCs), and hair follicles; lower proportions of mutated mtDNA were observed in WBCs and hair follicles of all examined maternal relatives. In the patient's muscle, abnormal fibers showed mitochondrial proliferation, severe focal defects in cytochrome c oxidase activity, and absence of cross-reacting material for mitochondrially synthesized polypeptides. These fibers had higher levels of mutated mtDNA than did surrounding "normal" fibers. Although the percentage of mutated mtDNA in WBCs from family members were distributed around the percentage observed in the mothers, the pattern was different in hair follicles, where the mutated population tended to increase in subsequent generations. PCR/RFLP analysis of single hairs showed that the intercellular variations in the percentage of mutated mtDNA differed among family members, with younger generations having a more homogeneous distribution of mutated mtDNA in different hair follicles. These results suggest that the intercellular distribution of the mutated and wild-type mtDNA populations may drift toward homogeneity in subsequent generations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b7/1801448/924feda52b93/ajhg00031-0008-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验