Konieczny I, Marszalek J
Department of Molecular Biology, University of Gdansk, Poland.
J Biol Chem. 1995 Apr 28;270(17):9792-9. doi: 10.1074/jbc.270.17.9792.
During the initiation of lambda DNA replication, the host DnaB helicase is complexed with phage lambda P protein in order to be properly positioned near the ori lambda-lambda O initiation complex. However, the lambda P-DnaB interaction inhibits the activities of DnaB. Thus, the concerted action of bacterial heat shock proteins, DnaK, DnaJ, and GrpE, is required to activate the helicase. Wild-type phage lambda cannot grow on the E. coli dnaB, dnaK, dnaJ, and grpE mutants. However, lambda phage with a mutation pi in the lambda P gene, is able to produce progeny in these mutants as well as in the wild-type bacteria. Purified mutant lambda pi protein reveals a much lower affinity to DnaB than wild-type lambda P, and the lambda pi-DnaB complex is unstable. Also, a very low concentration of DnaK protein is sufficient to activate the helicase in a replication system based on lambda dv dsDNA. In that system, the mutant DnaK756 protein, inactive in the lambda P-dependent replication, revealed its activity in the lambda pi-dependent reaction. The lambda O-lambda P-dependent replication system based on M13 ssDNA efficiently replicates DNA in the absence of any chaperone protein, unless lambda P is substituted by the lambda pi mutant protein. Data presented in this paper explain why lambda pi phage is able to grow on wild-type and dnaK756 bacteria.
在λ噬菌体DNA复制起始过程中,宿主DnaB解旋酶与噬菌体λP蛋白形成复合物,以便正确定位在oriλ-λO起始复合物附近。然而,λP-DnaB相互作用会抑制DnaB的活性。因此,需要细菌热休克蛋白DnaK、DnaJ和GrpE的协同作用来激活解旋酶。野生型λ噬菌体不能在大肠杆菌的dnaB、dnaK、dnaJ和grpE突变体上生长。然而,在λP基因中发生π突变的λ噬菌体能够在这些突变体以及野生型细菌中产生后代。纯化的突变型λπ蛋白与DnaB的亲和力比野生型λP低得多,并且λπ-DnaB复合物不稳定。此外,在基于λdv dsDNA的复制系统中,非常低浓度的DnaK蛋白就足以激活解旋酶。在该系统中,在依赖λP的复制中无活性的突变型DnaK756蛋白在依赖λπ的反应中显示出其活性。基于M13 ssDNA的λO-λP依赖的复制系统在没有任何伴侣蛋白的情况下能高效复制DNA,除非λP被λπ突变蛋白取代。本文给出的数据解释了为什么λπ噬菌体能够在野生型和dnaK756细菌上生长。