Stephenson J L, Wang H, Tewarson R P
Department of Physiology and Biophysics, Cornell University Medical College, New York 10021, USA.
Am J Physiol. 1995 Apr;268(4 Pt 2):F698-709. doi: 10.1152/ajprenal.1995.268.4.F698.
In this study we extend the analysis of the preceding two studies [J. L. Stephenson, J. F. Jen, H. Wang, and R. P. Tewarson. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F698-F709, 1995; and J. F. Jen, H. Wang, R. P. Tewarson, and J. L. Stephenson. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F000-F000, 1995] to a model that includes vasa recta. Distribution of nephron and vasa recta lengths is represented by shunting from descending to ascending flow. It is found that the effect of radial separation of structures on concentrating ability is closely linked to vasa recta flow. With minimal or no vasa recta flow the extent of radial mixing has little effect on concentrating ability. As vasa recta flow increases, concentrating ability is decreased by radial mixing. Convective uphill transport of NaCl is again observed, but concentrating ability appears to depend primarily on urea delivery to the inner medulla from the collecting duct rather than on the mechanism of salt transport out of thin ascending limb. Central core models give an upper bound on concentrating ability but do not attain the maximum urine osmolality of the rat with experimental values of tubular permeabilities.
在本研究中,我们将前两项研究[J. L. 斯蒂芬森、J. F. 詹、H. 王和R. P. 特瓦尔森。《美国生理学杂志》268卷(肾流体电解质生理学37):F698 - F709,1995年;以及J. F. 詹、H. 王、R. P. 特瓦尔森和J. L. 斯蒂芬森。《美国生理学杂志》268卷(肾流体电解质生理学37):F000 - F000,1995年]的分析扩展至一个包含直小血管的模型。肾单位和直小血管长度的分布通过从降支流向升支流的分流来表示。研究发现,结构的径向分离对浓缩能力的影响与直小血管血流密切相关。在直小血管血流极少或无血流时,径向混合程度对浓缩能力影响很小。随着直小血管血流增加,径向混合会降低浓缩能力。再次观察到NaCl的对流性上坡转运,但浓缩能力似乎主要取决于从集合管向髓质内层输送的尿素,而非取决于细升支中盐的转运机制。中央核心模型给出了浓缩能力的上限,但在肾小管通透性的实验值条件下,无法达到大鼠的最大尿渗透压。