Suppr超能文献

大鼠肾脏的数学模型。二、抗利尿作用。

A mathematical model of the rat kidney. II. Antidiuresis.

机构信息

Department of Physiology and Biophysics and Department of Medicine, Weill Medical College of Cornell University, New York, New York.

出版信息

Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F936-F955. doi: 10.1152/ajprenal.00046.2020. Epub 2020 Feb 24.

Abstract

Kidney water conservation requires a hypertonic medullary interstitium, NaCl in the outer medulla and NaCl and urea in the inner medulla, plus a vascular configuration that protects against washout. In this work, a multisolute model of the rat kidney is revisited to examine its capacity to simulate antidiuresis. The first step was to streamline model computation by parallelizing its Jacobian calculation, thus allowing finer medullary spatial resolution and more extensive examination of model parameters. It is found that outer medullary NaCl is modestly increased when transporter density in ascending Henle limbs from juxtamedullary nephrons is scaled to match the greater juxtamedullary solute flow. However, higher NaCl transport produces greater CO generation and, by virtue of countercurrent vascular flows, establishment of high medullary Pco. This CO gradient can be mitigated by assuming that a fraction of medullary transport is powered anaerobically. Reducing vascular flows or increasing vessel permeabilities does little to further increase outer medullary solute gradients. In contrast to medullary models of others, vessels in this model have solute reflection coefficients close to zero; increasing these coefficients provides little enhancement of solute profiles but does generate high interstitial pressures, which distort tubule architecture. Increasing medullary urea delivery via entering vasa recta increases inner medullary urea, although not nearly to levels found in rats. In summary, ) medullary Na and urea gradients are not captured by the model and ) the countercurrent architecture that provides antidiuresis also produces exaggerated Pco profiles and is an unappreciated constraint on models of medullary function.

摘要

肾脏的保水功能需要一个高渗的髓质间质,外髓质中的 NaCl 和内髓质中的 NaCl 和尿素,以及一种防止冲洗的血管结构。在这项工作中,重新审视了大鼠肾脏的多溶质模型,以检查其模拟抗利尿作用的能力。第一步是通过并行化其雅可比矩阵的计算来简化模型计算,从而允许更精细的髓质空间分辨率和更广泛的模型参数检查。结果发现,当从近髓肾单位的升支 Henle 上升段运输蛋白密度被调整以匹配更大的近髓溶质流量时,外髓质的 NaCl 会适度增加。然而,更高的 NaCl 转运会产生更大的 CO 生成,并且由于逆流血管流动,建立了高髓质 Pco。通过假设一部分髓质转运是无氧驱动的,可以减轻这种 CO 梯度。减少血管流量或增加血管通透性对进一步增加外髓质溶质梯度几乎没有作用。与其他髓质模型不同,该模型中的血管具有接近零的溶质反射系数;增加这些系数对溶质分布的改善很小,但会产生很高的间质压力,从而扭曲肾小管结构。通过进入直小血管增加髓质尿素的输送会增加内髓质尿素,尽管远不及大鼠中的水平。总之,模型不能捕获髓质的 Na 和尿素梯度,提供抗利尿作用的逆流结构也会产生夸张的 Pco 分布,并且对髓质功能模型是一个未被认识到的限制。

相似文献

1
A mathematical model of the rat kidney. II. Antidiuresis.大鼠肾脏的数学模型。二、抗利尿作用。
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F936-F955. doi: 10.1152/ajprenal.00046.2020. Epub 2020 Feb 24.
2
A mathematical model of the rat kidney: K-induced natriuresis.大鼠肾脏的数学模型:钾诱导的利钠作用。
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F925-F950. doi: 10.1152/ajprenal.00536.2016. Epub 2017 Feb 8.
3
Interstitial water and solute recovery by inner medullary vasa recta.髓质内直小血管对间质水和溶质的重吸收
Am J Physiol Renal Physiol. 2000 Feb;278(2):F257-69. doi: 10.1152/ajprenal.2000.278.2.F257.
7
Impact of renal medullary three-dimensional architecture on oxygen transport.肾髓质三维结构对氧运输的影响。
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.
8
Cycles and separations in a model of the renal medulla.肾髓质模型中的循环与分离
Am J Physiol. 1998 Nov;275(5):F671-90. doi: 10.1152/ajprenal.1998.275.5.F671.

引用本文的文献

1
High dietary K intake inhibits proximal tubule transport.高钾饮食抑制近端肾小管转运。
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
3
A mathematical model of the rat kidney. III. Ammonia transport.大鼠肾脏数学模型。III. 氨转运。
Am J Physiol Renal Physiol. 2021 Jun 1;320(6):F1059-F1079. doi: 10.1152/ajprenal.00008.2021. Epub 2021 Mar 29.

本文引用的文献

1
A mathematical model of the rat kidney: K-induced natriuresis.大鼠肾脏的数学模型:钾诱导的利钠作用。
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F925-F950. doi: 10.1152/ajprenal.00536.2016. Epub 2017 Feb 8.
2
A mathematical model of the rat nephron: glucose transport.大鼠肾单位的数学模型:葡萄糖转运
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
3
A mathematical model of rat proximal tubule and loop of Henle.大鼠近端肾小管和髓袢的数学模型。
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
5
A mathematical model of rat ascending Henle limb. II. Epithelial function.大鼠升支 Henle 袢的数学模型。Ⅱ.上皮功能。
Am J Physiol Renal Physiol. 2010 Mar;298(3):F525-42. doi: 10.1152/ajprenal.00231.2009. Epub 2009 Nov 18.
6
A mathematical model of rat ascending Henle limb. III. Tubular function.大鼠升支 Henle 袢的数学模型。III. 管状功能。
Am J Physiol Renal Physiol. 2010 Mar;298(3):F543-56. doi: 10.1152/ajprenal.00232.2009. Epub 2009 Nov 18.
9
Flow-dependent transport in a mathematical model of rat proximal tubule.大鼠近端肾小管数学模型中的流量依赖性转运
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验