Bailey J M, Tu O, Issai G, Ha A, Shively J E
Beckman Research Institute of the City of Hope, Division of Immunology, Duarte, California 91010, USA.
Anal Biochem. 1995 Jan 20;224(2):588-96. doi: 10.1006/abio.1995.1091.
Proteins and peptides can be sequenced from the carboxy-terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory have focused on automation of the thiocyanate chemistry using diphenyl phosphoroisothiocyanatidate (DPP-ITC) and pyridine to derivatize the C-terminal amino acid to a thiohydantoin and sodium trimethylsilanolate for specific hydrolysis of the derivatized C-terminal amino acid (Bailey, J. M., Nikfarjam, F., Shenoy, N. S., and Shively, J. E. (1992) Protein Sci. 1, 1622-1633). A major limitation of this approach was the inability to derivatize C-terminal proline. We now describe chemistry based on the DPP-ITC/pyridine reaction which is capable of derivatizing C-terminal proline to a thiohydantoin. The reaction of DPP-ITC/pyridine with C-terminal proline rapidly forms an acyl isothiocyanate which is capable of forming a quaternary amine containing thiohydantoin. Unlike formation of peptidylthiohydantoins with the other 19 commonly occurring amino acids in which cyclization to a thiohydantoin is concomitant with loss of a proton from the amide nitrogen, proline has no amide proton and as a result the newly formed proline thiohydantoin contains an unprotonated ring nitrogen. This cyclic structure if left unprotonated will regenerate C-terminal proline during the cleavage reaction. However, if protonated by the addition of acid, the proline thiohydantoin ring is stabilized and can be readily hydrolyzed to proline thiohydantoin and a shortened peptide by the addition of water vapor or alternatively by sodium or potassium trimethylsilanolate, the reagent normally used for the cleavage reaction. By introducing vaporphase trifluoroacetic acid (TFA) for the protonation reaction and water vapor for the hydrolysis reaction we have been able to automate the chemistry required for derivatization of C-terminal proline.(ABSTRACT TRUNCATED AT 250 WORDS)
蛋白质和肽可以用异硫氰酸酯试剂从羧基末端进行测序,以生成氨基酸硫代乙内酰脲衍生物。我们实验室之前的研究集中在使用二苯基磷酰异硫氰酸酯(DPP-ITC)和吡啶将硫氰酸酯化学自动化,将C末端氨基酸衍生化为硫代乙内酰脲,以及使用三甲基硅醇钠对衍生化的C末端氨基酸进行特异性水解(Bailey, J. M., Nikfarjam, F., Shenoy, N. S., and Shively, J. E. (1992) Protein Sci. 1, 1622 - 1633)。这种方法的一个主要局限性是无法将C末端脯氨酸衍生化。我们现在描述基于DPP-ITC/吡啶反应的化学方法,该方法能够将C末端脯氨酸衍生化为硫代乙内酰脲。DPP-ITC/吡啶与C末端脯氨酸的反应迅速形成酰基异硫氰酸酯,其能够形成含季铵的硫代乙内酰脲。与其他19种常见氨基酸形成肽基硫代乙内酰脲不同,在形成硫代乙内酰脲的环化过程中伴随着酰胺氮上质子的丢失,脯氨酸没有酰胺质子,因此新形成的脯氨酸硫代乙内酰脲含有一个未质子化的环氮。如果这个环状结构不被质子化,在裂解反应过程中会再生C末端脯氨酸。然而,如果通过添加酸进行质子化,脯氨酸硫代乙内酰脲环会稳定下来,并且通过添加水蒸气或通常用于裂解反应的试剂三甲基硅醇钠或三甲基硅醇钾,可以很容易地水解为脯氨酸硫代乙内酰脲和一个缩短的肽。通过引入气相三氟乙酸(TFA)进行质子化反应和水蒸气进行水解反应,我们已经能够将C末端脯氨酸衍生化所需的化学过程自动化。(摘要截短至250字)