Kruuv J, Glofcheski D J, Lepock J R
Guelph-Waterloo Program for Graduate Work in Physics, University of Waterloo, Ontario, Canada.
Cryobiology. 1995 Apr;32(2):182-90. doi: 10.1006/cryo.1995.1017.
The Arrhenius plots of inactivation (killing) rates of five mammalian cell lines, V-79 Chinese hamster lung, mouse L-929, mouse neuroblastoma, human 18LU, and human erythrocytes, exposed to hypothermia contain a break somewhere between 5 and 10 degrees C caused by a change from positive to negative slope, which corresponds to the minimum inactivation rate. This implies that there are two distinct mechanisms of hypothermic damage above and below the minimum inactivation rate temperature in a system that is uncomplicated by previous or simultaneous hypoxia. Hence, having two distinct mechanisms for hypothermia damage is not unique to the Chinese hamster cell line. This suggests that the optimum aerobic hypothermic storage temperature for human cells and tissues is not 0 degree C, but somewhere in the range of 5 to 10 degrees C.
暴露于低温环境下的五种哺乳动物细胞系(V-79中国仓鼠肺细胞、小鼠L-929细胞、小鼠神经母细胞瘤细胞、人18LU细胞和人红细胞)失活(杀伤)速率的阿累尼乌斯曲线在5至10摄氏度之间的某处存在一个转折点,该转折点由正斜率变为负斜率,对应着最低失活速率。这意味着在一个未受先前或同时存在的缺氧情况影响的系统中,高于和低于最低失活速率温度时,低温损伤存在两种不同的机制。因此,具有两种不同的低温损伤机制并非中国仓鼠细胞系所特有。这表明人类细胞和组织的最佳需氧低温储存温度并非0摄氏度,而是在5至10摄氏度范围内的某个温度。