Lei K J, Pan C J, Liu J L, Shelly L L, Chou J Y
Human Genetics Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 1995 May 19;270(20):11882-6. doi: 10.1074/jbc.270.20.11882.
Glucose-6-phosphatase (G6Pase) is the enzyme deficient in glycogen storage disease type 1a, an autosomal recessive disorder. We have previously identified six mutations in the G6Pase gene of glycogen storage disease type 1a patients and demonstrated that these mutations abolished or greatly reduced enzymatic activity of G6Pase, a hydrophobic protein of 357 amino acids. Of these, four mutations (R83C, R295C, G222R, and Q347X) are missense and one (Q347X) generates a truncated G6Pase of 346 residues. To further understand the roles and structural requirements of amino acids 83, 222, 295, and those at the carboxyl terminus in G6Pase catalysis, we characterized mutant G6Pases generated by near-saturation mutagenesis of the aforementioned amino acids. Substitution of Arg-83 with amino acids of diverse structures including Lys, a conservative change, yielded mutant G6Pase with no enzymatic activity. On the other hand, substitution of Arg-295 with Lys (R295K) retained high activity, and R295N, R295S, and R295Q exhibited moderate activity. All other substitutions of Arg-295 had no G6Pase activity, suggesting that the role of Arg-295 is to stabilize the protein either by salt bridge or hydrogen-bond formation. Substitution of Gly-222, however, remained functional unless a basic (Arg or Lys), acidic (Asp), or large polar (Gln) residue was introduced, consistent with the hydrophobic requirement of codon 222, which is predicted to be in the fourth membrane-spanning domain. It is possible that Arg-83 is involved in stabilizing the enzyme (His)-phosphate intermediate formed during G6Pase catalysis. There exist 9 conserved His residues in human G6Pase. His-9, His-119, His-252, and His-353 reside on the same side of the endoplasmic reticulum membrane as Arg-83. Whereas H119A mutant G6Pase had no enzymatic activity, H9A, H252A, and H353A mutant G6Pases retained significant activity. Substitution of His-119 with amino acids of diverse structures also yielded mutant G6Pase with no activity, suggesting that His-119 is the phosphate acceptor in G6Pase catalysis. We also present data demonstrating that the carboxyl-terminal 8 residues in human G6Pase are not essential for G6Pase catalysis.
葡萄糖-6-磷酸酶(G6Pase)是1a型糖原贮积病中缺乏的酶,这是一种常染色体隐性疾病。我们之前在1a型糖原贮积病患者的G6Pase基因中鉴定出六个突变,并证明这些突变消除或极大地降低了G6Pase的酶活性,G6Pase是一种含有357个氨基酸的疏水蛋白。其中,四个突变(R83C、R295C、G222R和Q347X)是错义突变,一个(Q347X)产生了一个346个残基的截短型G6Pase。为了进一步了解G6Pase催化过程中第83、222、295位氨基酸以及羧基末端那些氨基酸的作用和结构要求,我们对上述氨基酸进行了近饱和诱变而产生的突变型G6Pase进行了特性分析。用包括赖氨酸(一种保守性改变)在内的不同结构的氨基酸替换精氨酸-83,产生的突变型G6Pase没有酶活性。另一方面,用赖氨酸替换精氨酸-295(R295K)保留了高活性,而R295N、R295S和R295Q表现出中等活性。精氨酸-295的所有其他替换都没有G6Pase活性,这表明精氨酸-295的作用是通过形成盐桥或氢键来稳定蛋白质。然而,除非引入碱性(精氨酸或赖氨酸)、酸性(天冬氨酸)或大的极性(谷氨酰胺)残基,否则甘氨酸-222的替换仍具有功能,这与密码子222的疏水要求一致,密码子222预计位于第四个跨膜结构域。精氨酸-83可能参与稳定G6Pase催化过程中形成的酶(组氨酸)-磷酸中间体。人类G6Pase中有9个保守的组氨酸残基。组氨酸-9、组氨酸-119、组氨酸-252和组氨酸-353与精氨酸-83位于内质网膜的同一侧。而H119A突变型G6Pase没有酶活性,H9A、H252A和H353A突变型G6Pase保留了显著活性。用不同结构的氨基酸替换组氨酸-119也产生了没有活性的突变型G6Pase,这表明组氨酸-119是G6Pase催化中的磷酸受体。我们还提供数据表明,人类G6Pase中羧基末端的8个残基对G6Pase催化不是必需的。