Suppr超能文献

通过基于 CRISPR/Cas9 的基因编辑纠正糖原贮积病 Ia 型小鼠模型中的代谢异常。

Correction of metabolic abnormalities in a mouse model of glycogen storage disease type Ia by CRISPR/Cas9-based gene editing.

机构信息

Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Foundation Fighting Blindness, Columbia, MD 21046, USA.

出版信息

Mol Ther. 2021 Apr 7;29(4):1602-1610. doi: 10.1016/j.ymthe.2020.12.027. Epub 2020 Dec 23.

Abstract

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.

摘要

糖原贮积病 Ia 型(GSD-Ia),葡萄糖-6-磷酸酶-α(G6PC)缺乏,其特征是葡萄糖稳态受损和空腹低血糖的标志。我们已经开发出一种用于 GSD-Ia 的重组腺相关病毒(rAAV)载体介导的基因治疗方法,目前正在进行 I/II 期临床试验。虽然在小鼠中,外源性 rAAV-G6PC 临床载体的治疗表达是稳定的,但在人类中的长期表达持久性目前正在建立。在这里,我们评估了基于 CRISPR/Cas9 的体内基因组编辑技术来纠正常见的致病性人类变体 G6PC-p.R83C。我们已经生成了一种纯合 G6pc-R83C 小鼠品系,并表明 G6pc-R83C 小鼠表现出葡萄糖稳态受损和频繁的低血糖性癫痫发作,模拟了 GSD-Ia 患者的病理生理学。然后,我们使用基于 CRISPR/Cas9 的基因编辑系统来治疗新生的 G6pc-R83C 小鼠,并表明接受治疗的小鼠正常生长至 16 周龄,没有低血糖性癫痫发作。表达正常肝 G6Pase-α 活性的≥3%的经处理的 G6pc-R83C 小鼠维持葡萄糖稳态,显示出正常的血液代谢物,并且可以维持 24 小时的禁食。总之,我们已经开发出第二代疗法,其中在体内纠正天然遗传基因座中的致病性 G6PC-p.R83C 变体可能导致潜在的永久性、持久的、长期的 GSD-Ia 表型纠正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e7/8058440/c1dbe386d098/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验