Suppr超能文献

氧化葡萄糖酸杆菌中葡萄糖酸盐:NADP 5-氧化还原酶基因的生化特性及序列分析

Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans.

作者信息

Klasen R, Bringer-Meyer S, Sahm H

机构信息

Institut für Biotechnologie, Forschungszentrum Jülich, Germany.

出版信息

J Bacteriol. 1995 May;177(10):2637-43. doi: 10.1128/jb.177.10.2637-2643.1995.

Abstract

Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues.

摘要

葡糖酸盐

NADP 5-氧化还原酶(GNO)从氧化葡萄糖杆菌氧化葡萄糖亚种DSM3503中纯化至同质。该酶参与葡萄糖的非磷酸化生酮氧化,并将葡糖酸盐氧化为5-酮葡糖酸盐。GNO定位于细胞质中,等电点为4.3,表观分子量为75,000。在十二烷基硫酸钠凝胶电泳中,出现了一条对应分子量为33,000的条带,这表明该酶由两个相同的亚基组成。葡糖酸盐氧化的最适pH为pH 10,底物葡糖酸盐的表观Km值为20.6 mM,辅底物NADP的表观Km值为73 μM。该酶以NAD作为辅因子时几乎无活性,对底物葡糖酸盐和5-酮葡糖酸盐具有高度特异性。D-葡萄糖、D-山梨醇和D-甘露醇不被氧化,2-酮葡糖酸盐和L-山梨糖不被还原。仅D-果糖被接受,其反应速率为5-酮葡糖酸盐还原速率的10%。通过与与编码该酶前20个N端氨基酸的DNA序列互补的基因探针杂交,鉴定出编码GNO的gno基因。gno基因克隆在一个3.4 kb的DNA片段上并在大肠杆菌中表达。该基因的测序揭示了一个771 bp的开放阅读框,编码一个257个氨基酸的蛋白质,预测相对分子质量为27.3 kDa。质粒编码的gno在大肠杆菌中功能性表达,无细胞蛋白的活性为6.04 U/mg,在氧化葡萄糖杆菌中无细胞蛋白的活性为6.80 U/mg,这相当于氧化葡萄糖杆菌野生型GNO活性的85倍过表达。多序列比对表明,GNO属于II类醇脱氢酶或短链脱氢酶,它们显示出六个严格保守氨基酸残基的典型模式。

相似文献

2
Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
Appl Microbiol Biotechnol. 2004 Mar;64(1):86-90. doi: 10.1007/s00253-003-1455-8. Epub 2003 Oct 16.
4
Identification of the yqhE and yafB genes encoding two 2, 5-diketo-D-gluconate reductases in Escherichia coli.
Appl Environ Microbiol. 1999 Aug;65(8):3341-6. doi: 10.1128/AEM.65.8.3341-3346.1999.
10
The gntP gene of Escherichia coli involved in gluconate uptake.
J Bacteriol. 1996 Jan;178(1):61-7. doi: 10.1128/jb.178.1.61-67.1996.

引用本文的文献

1
High-yield production of 5-keto-D-gluconic acid via regulated fermentation strategy of and its conversion to L-(+)-tartaric acid.
Heliyon. 2024 Aug 22;10(17):e36527. doi: 10.1016/j.heliyon.2024.e36527. eCollection 2024 Sep 15.
2
Development of efficient 5-ketogluconate production system by Gluconobacter japonicus.
Appl Microbiol Biotechnol. 2022 Dec;106(23):7751-7761. doi: 10.1007/s00253-022-12242-0. Epub 2022 Oct 22.
3
Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum.
Acta Crystallogr F Struct Biol Commun. 2020 May 1;76(Pt 5):228-234. doi: 10.1107/S2053230X20005336. Epub 2020 Apr 29.
5
(13)C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H.
Metabolites. 2015 Sep 2;5(3):455-74. doi: 10.3390/metabo5030455.
6
NADPH-generating systems in bacteria and archaea.
Front Microbiol. 2015 Jul 29;6:742. doi: 10.3389/fmicb.2015.00742. eCollection 2015.
7
Acetic Acid bacteria: physiology and carbon sources oxidation.
Indian J Microbiol. 2013 Dec;53(4):377-84. doi: 10.1007/s12088-013-0414-z. Epub 2013 May 5.
9
Discovery of an L-fucono-1,5-lactonase from cog3618 of the amidohydrolase superfamily.
Biochemistry. 2013 Jan 8;52(1):239-53. doi: 10.1021/bi3015554. Epub 2012 Dec 20.
10
Tagaturonate-fructuronate epimerase UxaE, a novel enzyme in the hexuronate catabolic network in Thermotoga maritima.
Environ Microbiol. 2012 Nov;14(11):2920-34. doi: 10.1111/j.1462-2920.2012.02856.x. Epub 2012 Aug 23.

本文引用的文献

2
The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum.
Biochim Biophys Acta. 1959 Jul;34:171-83. doi: 10.1016/0006-3002(59)90245-8.
3
Transduction of linked genetic characters of the host by bacteriophage P1.
Virology. 1955 Jul;1(2):190-206. doi: 10.1016/0042-6822(55)90016-7.
4
The ketogenic activities of Acetobacter species in a glucose medium.
Arch Biochem Biophys. 1954 May;50(1):169-79. doi: 10.1016/0003-9861(54)90019-3.
5
Molecular characterization of microbial alcohol dehydrogenases.
Crit Rev Microbiol. 1994;20(1):13-56. doi: 10.3109/10408419409113545.
9
A protein sequenator.
Eur J Biochem. 1967 Mar;1(1):80-91. doi: 10.1007/978-3-662-25813-2_14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验