Suppr超能文献

三维心肌变形:通过位移场拟合标记磁共振图像进行计算

Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images.

作者信息

O'Dell W G, Moore C C, Hunter W C, Zerhouni E A, McVeigh E R

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Radiology. 1995 Jun;195(3):829-35. doi: 10.1148/radiology.195.3.7754016.

Abstract

PURPOSE

To reconstruct three-dimensional (3D) myocardial deformations from orthogonal sets of parallel-tagged magnetic resonance (MR) images.

MATERIALS AND METHODS

Displacement information in the direction normal to the undeformed tag planes was obtained at points along tag lines. Three independent sets of one-dimensional displacement data were used to fit an analytical series expression to describe 3D displacement as a function of deformed position. The technique was demonstrated with computer-generated models of the deformed left ventricle with data from healthy human volunteers.

RESULTS

Model deformations were reconstructed with a 3D tracking error of less than 0.3 mm. Error between estimated and observed one-dimensional displacements along the tags in 10 human subjects was 0.00 mm +/- 0.36 (mean +/- standard deviation). Robustness to noise in the tag displacement data was demonstrated by using a Monte Carlo simulation.

CONCLUSION

The combination of rapidly acquired parallel-tagged MR images and field-fitting analysis is a valuable tool in cardiac mechanics research and in the clinical assessment of cardiac mechanical function.

摘要

目的

从平行标记磁共振(MR)图像的正交集中重建三维(3D)心肌变形。

材料与方法

在标记线沿线的点处获得垂直于未变形标记平面方向的位移信息。使用三组独立的一维位移数据来拟合一个解析级数表达式,以将3D位移描述为变形位置的函数。通过计算机生成的变形左心室模型以及来自健康人类志愿者的数据对该技术进行了演示。

结果

模型变形的重建3D跟踪误差小于0.3毫米。10名人类受试者中,沿标记方向估计的和观察到的一维位移之间的误差为0.00毫米±0.36(平均值±标准差)。通过蒙特卡罗模拟证明了对标记位移数据中噪声的鲁棒性。

结论

快速采集的平行标记MR图像与场拟合分析相结合,是心脏力学研究和心脏机械功能临床评估中的一种有价值的工具。

相似文献

8
Cardiac material markers from tagged MR images.
Med Image Anal. 1998 Dec;2(4):339-53. doi: 10.1016/s1361-8415(98)80015-7.

引用本文的文献

2
Independently Trained Multi-Scale Registration Network Based on Image Pyramid.基于图像金字塔的独立训练多尺度配准网络。
J Imaging Inform Med. 2024 Aug;37(4):1557-1566. doi: 10.1007/s10278-024-01019-8. Epub 2024 Mar 5.
5
The long fight against motion artifacts in cardiac PET.在心脏正电子发射断层扫描中对抗运动伪影的漫长斗争。
J Nucl Cardiol. 2022 Feb;29(1):69-71. doi: 10.1007/s12350-020-02232-y. Epub 2020 Jun 18.
7
The role of nuclear medicine in assessments of cardiac dyssynchrony.核医学在评估心脏不同步中的作用。
J Nucl Cardiol. 2018 Dec;25(6):1980-1987. doi: 10.1007/s12350-017-1072-z. Epub 2017 Sep 27.

本文引用的文献

4
Improved myocardial tagging contrast.改善心肌标记对比。
Magn Reson Med. 1993 Aug;30(2):191-200. doi: 10.1002/mrm.1910300207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验