Suppr超能文献

基于磁共振的 PET 心脏和呼吸运动校正:在静态和动态心脏 F-FDG 成像中的应用。

MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac F-FDG imaging.

机构信息

Contributed equally to this work.

出版信息

Phys Med Biol. 2019 Oct 4;64(19):195009. doi: 10.1088/1361-6560/ab39c2.

Abstract

Motion of the myocardium deteriorates the quality and quantitative accuracy of cardiac PET images. We present a method for MR-based cardiac and respiratory motion correction of cardiac PET data and evaluate its impact on estimation of activity and kinetic parameters in human subjects. Three healthy subjects underwent simultaneous dynamic F-FDG PET and MRI on a hybrid PET/MR scanner. A cardiorespiratory motion field was determined for each subject using navigator, tagging and golden-angle radial MR acquisitions. Acquired coincidence events were binned into cardiac and respiratory phases using electrocardiogram and list mode-driven signals, respectively. Dynamic PET images were reconstructed with MR-based motion correction (MC) and without motion correction (NMC). Parametric images of F-FDG consumption rates (K) were estimated using Patlak's method for both MC and NMC images. MC alleviated motion artifacts in PET images, resulting in improved spatial resolution, improved recovery of activity in the myocardium wall and reduced spillover from the myocardium to the left ventricle cavity. Significantly higher myocardium contrast-to-noise ratio and lower apparent wall thickness were obtained in MC versus NMC images. Likewise, parametric images of K calculated with MC data had improved spatial resolution as compared to those obtained with NMC. Consistent with an increase in reconstructed activity concentration in the frames used during kinetic analyses, MC led to the estimation of higher K values almost everywhere in the myocardium, with up to 18% increase (mean across subjects) in the septum as compared to NMC. This study shows that MR-based motion correction of cardiac PET results in improved image quality that can benefit both static and dynamic studies.

摘要

心肌运动降低了心脏 PET 图像的质量和定量准确性。我们提出了一种基于磁共振的心脏和呼吸运动校正方法,用于校正心脏 PET 数据,并评估其对人体活动和动力学参数估计的影响。三位健康受试者在一台 PET/MR 混合扫描仪上同时进行动态 F-FDG PET 和 MRI 检查。使用导航仪、标记和黄金角度径向 MR 采集,为每位受试者确定了心脏和呼吸运动场。使用心电图和列表模式驱动信号将采集到的符合事件分别分配到心脏和呼吸阶段。使用基于 MR 的运动校正(MC)和无运动校正(NMC)重建动态 PET 图像。使用 Patlak 方法分别对 MC 和 NMC 图像估计 F-FDG 消耗率(K)的参数图像。MC 减轻了 PET 图像中的运动伪影,从而提高了空间分辨率,提高了心肌壁的活性恢复,并减少了心肌向左心室腔的溢出。MC 图像获得的心肌对比度噪声比更高,壁厚度表观值更低。同样,与 NMC 相比,使用 MC 数据计算的 K 参数图像具有更高的空间分辨率。与在动力学分析中使用的重建活动浓度帧的增加一致,MC 导致几乎在整个心肌中估计出更高的 K 值,与 NMC 相比,室间隔增加了 18%(平均每个受试者)。这项研究表明,基于磁共振的心脏 PET 运动校正可提高图像质量,从而有益于静态和动态研究。

相似文献

2
MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.
J Magn Reson Imaging. 2018 Nov;48(5):1288-1296. doi: 10.1002/jmri.26000. Epub 2018 Mar 8.
3
Practical PET Respiratory Motion Correction in Clinical PET/MR.
J Nucl Med. 2015 Jun;56(6):890-6. doi: 10.2967/jnumed.114.151779. Epub 2015 May 7.
4
Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR.
Phys Med Biol. 2017 Jan 21;62(2):326-343. doi: 10.1088/1361-6560/aa5087. Epub 2016 Dec 20.
5
Body motion detection and correction in cardiac PET: Phantom and human studies.
Med Phys. 2019 Nov;46(11):4898-4906. doi: 10.1002/mp.13815. Epub 2019 Oct 8.
6
Respiratory- and cardiac motion-corrected simultaneous whole-heart PET and dual phase coronary MR angiography.
Magn Reson Med. 2019 Mar;81(3):1671-1684. doi: 10.1002/mrm.27517. Epub 2018 Oct 15.
7
MR-based motion correction for cardiac PET parametric imaging: a simulation study.
EJNMMI Phys. 2018 Feb 1;5(1):3. doi: 10.1186/s40658-017-0200-9.
9
Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications.
J Nucl Med. 2015 Jun;56(6):884-9. doi: 10.2967/jnumed.114.153007. Epub 2015 Apr 23.
10
Motion correction strategies for integrated PET/MR.
J Nucl Med. 2015 Feb;56(2):261-9. doi: 10.2967/jnumed.114.146787. Epub 2015 Jan 8.

引用本文的文献

2
A Methodology to Measure Glucose Metabolism by Quantitative Analysis of PET Images.
J Healthc Inform Res. 2024 Sep 25;8(4):640-657. doi: 10.1007/s41666-024-00172-7. eCollection 2024 Dec.
3
4
Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation.
Diagnostics (Basel). 2021 Nov 18;11(11):2138. doi: 10.3390/diagnostics11112138.
5
Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging.
Philos Trans A Math Phys Eng Sci. 2021 Aug 23;379(2204):20200207. doi: 10.1098/rsta.2020.0207. Epub 2021 Jul 5.
6
Design and system evaluation of a dual-panel portable PET (DP-PET).
EJNMMI Phys. 2021 Jun 12;8(1):47. doi: 10.1186/s40658-021-00392-5.
7
Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning.
IEEE Trans Med Imaging. 2021 Dec;40(12):3293-3304. doi: 10.1109/TMI.2021.3082578. Epub 2021 Nov 30.
8
Multiparametric Cardiac F-FDG PET in Humans: Kinetic Model Selection and Identifiability Analysis.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):759-767. doi: 10.1109/trpms.2020.3031274. Epub 2020 Oct 15.
9
Quantitative PET in the 2020s: a roadmap.
Phys Med Biol. 2021 Mar 12;66(6):06RM01. doi: 10.1088/1361-6560/abd4f7.
10
Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR.
Phys Med Biol. 2020 Dec 2;65(23):235022. doi: 10.1088/1361-6560/abb31d.

本文引用的文献

1
Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling.
Phys Med Biol. 2018 Nov 14;63(22):225011. doi: 10.1088/1361-6560/aaea97.
2
Patient motion correction for dynamic cardiac PET: Current status and challenges.
J Nucl Cardiol. 2020 Dec;27(6):1999-2002. doi: 10.1007/s12350-018-01513-x. Epub 2018 Nov 12.
3
Automated dynamic motion correction using normalized gradient fields for rubidium PET myocardial blood flow quantification.
J Nucl Cardiol. 2020 Dec;27(6):1982-1998. doi: 10.1007/s12350-018-01471-4. Epub 2018 Nov 7.
4
Motion Correction and Its Impact on Absolute Myocardial Blood Flow Measures with PET.
Curr Cardiol Rep. 2018 Mar 24;20(5):34. doi: 10.1007/s11886-018-0977-8.
5
MR-based motion correction for cardiac PET parametric imaging: a simulation study.
EJNMMI Phys. 2018 Feb 1;5(1):3. doi: 10.1186/s40658-017-0200-9.
6
Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach.
J Nucl Med. 2018 Sep;59(9):1474-1479. doi: 10.2967/jnumed.117.203943. Epub 2018 Jan 25.
7
MR-based respiratory and cardiac motion correction for PET imaging.
Med Image Anal. 2017 Dec;42:129-144. doi: 10.1016/j.media.2017.08.002. Epub 2017 Aug 3.
8
MRI-assisted dual motion correction for myocardial perfusion defect detection in PET imaging.
Med Phys. 2017 Sep;44(9):4536-4547. doi: 10.1002/mp.12429. Epub 2017 Aug 9.
9
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
PET Clin. 2017 Jul;12(3):321-327. doi: 10.1016/j.cpet.2017.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验