Suppr超能文献

Nuclear-envelope nucleoside triphosphatase kinetics and mRNA transport following brain ischemia and reperfusion.

作者信息

Tiffany B R, White B C, Krause G S

机构信息

Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA.

出版信息

Ann Emerg Med. 1995 Jun;25(6):809-17. doi: 10.1016/s0196-0644(95)70213-x.

Abstract

STUDY HYPOTHESIS

We attempted to determine whether the reduced egress of mRNA from brain nuclei following in vivo ischemia and reperfusion is caused by direct damage to the nuclear pore-associated NTPase that impairs the system for nuclear export of polyadenylated, or poly(A)+, mRNA.

DESIGN

Prospective animal study.

INTERVENTIONS

NTPase activity and poly(A)+ mRNA transport were studied in nuclear envelope vesicles (NEVs) prepared from canine parietal cortex isolated after 20 minutes of ischemia or 20 minutes of ischemia and 2 or 6 hours of reperfusion.

RESULTS

Brain NEV NTPase Michaelis-Menten constant (Km) and maximum uptake velocity (Vmax) and the ATP-stimulated poly(A)+ mRNA egress rates were not significantly affected by ischemia and reperfusion. In vitro exposure of the NEVs to the OH. radical-generating system completely abolished NTPase activity.

CONCLUSION

We conclude that brain ischemia and reperfusion do not induce direct inhibition of nucleocytoplasmic transport of poly(A)+ mRNA. This suggests that the nuclear membrane is not exposed to significant concentrations of OH. radical during reperfusion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验