Ippolito J A, Baird T T, McGee S A, Christianson D W, Fierke C A
Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323, USA.
Proc Natl Acad Sci U S A. 1995 May 23;92(11):5017-21. doi: 10.1073/pnas.92.11.5017.
We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.
我们已将第四种蛋白质配体插入碳酸酐酶II(CAII)的锌配位多面体中,该配体使金属亲和力提高了200倍(解离常数Kd = 20 fM)。通过X射线晶体学方法分别测定到苏氨酸-199→天冬氨酸(T199D)和苏氨酸-199→谷氨酸(T199E)的CAII的三维结构,分辨率分别为2.35埃和2.2埃,结果显示了一个由H94、H96、H119和工程化的羧酸盐侧链组成的四面体金属结合位点,该侧链取代了与锌结合的氢氧化物。尽管这两种工程化的羧酸盐 - 锌相互作用的立体化学都与天然存在的蛋白质锌结合位点中的不同,但在T199E CAII中蛋白质 - 锌亲和力增强,这表明配体 - 金属间距是羧酸盐 - 锌亲和力的一个重要决定因素。相比之下,苏氨酸-199→组氨酸(T199H)的CAII的三维结构在2.25埃分辨率下测定,结果表明工程化的咪唑侧链从金属处旋转开且不与锌配位;这导致锌结合位点较弱。所有这三种取代几乎都消除了CO2水合酶活性,这与锌结合的氢氧化物作为催化亲核试剂的作用一致。如果侧链能够采取合理的构象并实现内球锌配位,那么额外蛋白质配体的工程化是提高蛋白质 - 金属亲和力的一种通用方法。此外,这种结构辅助设计方法可能在高灵敏度金属离子生物传感器的开发中有效。