Suppr超能文献

Neutron-induced cell cycle-dependent oncogenic transformation of C3H 10T1/2 cells.

作者信息

Miller R C, Geard C R, Martin S G, Marino S A, Hall E J

机构信息

Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.

出版信息

Radiat Res. 1995 Jun;142(3):270-5.

PMID:7761576
Abstract

Exposure of synchronized populations of mouse C3H 10T1/2 cells to a single dose (0.6 Gy) of 5.9 MeV neutrons at intervals after mitotic shake-off results in a distinctive variation in the oncogenic transformation frequency through the cell cycle. Previous findings show a sensitive window for X-ray-induced oncogenic transformants at late times after mitotic shake-off (14-16 h). Optimal sensitivity to neutrons was observed for cell populations irradiated soon after mitotic shake-off (4-6 h), where the majority of cells would be in the G1 phase of the cell cycle. Additionally, enhanced sensitivity was also found for that period after shake-off (14-16 h) which was maximally sensitive to X rays corresponding to cell populations with a high proportion of G2-phase cells. That is, low-LET radiation (250 kVp X rays) largely appears to produce oncogenic transformants in G2-phase cells, while intermediate-LET radiation (5.9 MeV neutrons) is effective principally on G1- and, to a somewhat lesser extent, G2-phase cells. Cells irradiated with neutrons showed less variation for lethality through the cell cycle than those irradiated with X rays, in agreement with previous findings. The mechanistic basis for the difference in the response of cells in the different phases of the cell cycle to radiations of different quality is unknown but is suggestive of distinct ("signature") molecular changes leading to the observed oncogenic transformation response.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验