Hutchinson C R
School of Pharmacy, University of Wisconsin, Madison 53706.
Biotechnology (N Y). 1994 Apr;12(4):375-80. doi: 10.1038/nbt0494-375.
The interplay between chemical and biological approaches to drug discovery and development is increasing with the advent of combinatorial methods that accelerate the output of screening programs and the development of genetically modified microorganisms able to make new metabolites and larger amounts of known ones. Actinomycetes, the most prolific microbial source of known drugs, can produce new aromatic compounds by manipulation of the Type II polyketide synthase genes as well as analogs of existing macrolide antibiotics, unavailable by chemical synthesis, through targeted mutation of specific biosynthetic genes. Genetic alteration of pathways to aminoglycoside and oligopeptide antibiotics should offer equally promising approaches to manufacturing novel metabolites. When coupled with DNA-based prescreening of microbial isolates for genes associated with known pharmacologically active agents, these new genetic-based approaches are creating an expanded role for microorganisms in drug research.
随着组合方法的出现,药物发现与开发中化学方法与生物学方法之间的相互作用日益增强。组合方法加速了筛选项目的产出,并且能够培育出能产生新代谢产物以及大量已知代谢产物的转基因微生物。放线菌是已知药物最为丰富的微生物来源,通过操纵II型聚酮合酶基因,放线菌能够产生新的芳香族化合物;同时,通过对特定生物合成基因进行靶向突变,放线菌还能产生化学合成无法得到的现有大环内酯类抗生素的类似物。对氨基糖苷类和寡肽类抗生素合成途径进行基因改造,有望同样为制造新型代谢产物提供有效的方法。当与基于DNA的微生物分离株预筛选相结合,以寻找与已知药理活性剂相关的基因时,这些基于基因的新方法正在为微生物在药物研究中创造更广泛的作用。