Lodge J K, Sadler P J, Kus M L, Winyard P G
Department of Chemistry, Birkbeck College, University of London, UK.
Biochim Biophys Acta. 1995 May 17;1256(2):130-40. doi: 10.1016/0005-2760(94)00253-u.
Oxidatively modified LDL (oLDL) is thought to play a key role in the pathogenesis of atherosclerosis. We have studied Cu(2+)-induced peroxidation reactions of LDL and have elucidated the sequence of events which subsequently occur within LDL particles by 1H-NMR spectroscopy. Studies of chloroform/methanol extracts show that LDL arachidonate is oxidised by Cu2+ at a higher rate and to a greater extent than linoleate, giving isomeric hydroperoxides with predominantly trans,trans double-bonds, whilst only cis,trans isomers were detected as intrinsic hydroperoxides in control LDL samples. These intrinsic hydroperoxides were not degraded during peroxidation, suggesting that they are not involved in the initiation of Cu(2+)-induced peroxidation. Aldehydes arising from the decomposition of hydroperoxides were also detected, as well as saturated fatty acids which were released into the external aqueous medium. Decomposition pathways of the two major isomeric hydroperoxides are discussed. Cu(2+)-induced oxidation of LDL cholesterol appears to occur only after hydroperoxide breakdown, with esterified cholesterol being oxidised to a greater extent than free cholesterol. Phospholipid hydrolysis appeared to parallel the peroxidation of arachidonic acid, and the released lysophosphatidylcholine may become associated with apoB. These results suggest that hydroperoxide breakdown (probably in phospholipids) may be a key event in the peroxidation process, leading to the oxidation of cholesterol and propagation into the core of LDL.