Suppr超能文献

Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes?

作者信息

Buser C A, Kim J, McLaughlin S, Peitzsch R M

机构信息

Department of Physiology and Biophysics, HSC, SUNY, Stony Brook, NY 11790, USA.

出版信息

Mol Membr Biol. 1995 Jan-Mar;12(1):69-75. doi: 10.3109/09687689509038498.

Abstract

Several proteins that are important components of the calcium/phospholipid second messenger system (e.g. phospholipase C, protein kinase C, myristoylated alanine-rich C kinase substrate (MARCKS) and pp60src) contain clusters of basic residues that can interact with acidic lipids on the cytoplasmic surface of plasma membranes. We have studied the membrane binding of MARCKS and pp60src, peptides that mimic the basic regions of these proteins, and simple model peptides. Specifically, we determined how the binding of these model peptides depends on (1) the number of basic residues in the peptide (2) the fraction of acidic lipids in the membrane (3) the ionic strength of the solution (4) the chemical nature of the basic residues (Arg versus Lys) and the acidic phospholipids [phosphatidylglycerol (PG) versus phosphatidylserine (PS)] (5) the pressure and (6) the temperature. The results are consistent with a simple theoretical model: each basic residue in a peptide binds independently to an acidic lipid with an intrinsic microscopic association constant of 1-10 M-1 (binding energy congruent to 1 kcal/mol). The binding is described with a mass action formalism and the non-specific electrostatic accumulation of the peptides in the aqueous diffuse double layer is described with the Gouy-Chapman theory. This Gouy-Chapman/mass action model accounts surprisingly well for the sigmoidal dependence of binding on the percentage of acidic lipids in the membrane (apparent co-operativity or Hill coefficient > 1); the model assumes that the multivalent basic peptides bind > 1 acidic lipids and thus induce or stabilize domain formation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验