Suppr超能文献

Metabolism of D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose, D-[6-3H]glucose and D-[U-14C]glucose by rat and human erythrocytes incubated in the presence of H2O or D2O.

作者信息

Conget I, Malaisse W J

机构信息

Laboratory of Experimental Medicine, Erasmus Medical School, Brussels Free University, Belgium.

出版信息

Int J Biochem Cell Biol. 1995 Feb;27(2):225-9. doi: 10.1016/1357-2725(94)00074-l.

Abstract

The present study investigates whether heavy water affects the efficiency of 3HOH production from D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose and D-[6-3H]glucose relative to the total generation of tritiated metabolites produced by either rat or human erythrocytes. The relative 3HOH yield was close to 95% with D-[5-3H]glucose, 72% with D-[2-3H]glucose, 22-32% with D-[1-3H]glucose, and only 12% with D-[6-3H]glucose. In the latter case, the comparison of the specific radioactivity of intracellular and extracellular acidic metabolites, expressed relative to that of 14C-labelled metabolites produced from D-[U-14C]glucose, indicated that the generation of 3HOH from D-[6-3H]glucose occurs at distal metabolic steps, such as the partial reversion of the pyruvate kinase reaction or the interconversion of pyruvate and L-alanine in the reaction catalysed by glutamate-pyruvate transaminase. As a rule, the substitution of H2O by D2O only caused minor to negligible changes in the relative 3HOH yield. This implies that the unexpectedly high deuteration of 13C-labelled D-glucose metabolites recently documented in erythrocytes exposed to D2O cannot be attributed to any major interference of heavy water with factors regulating both the deuteration and detritiation efficiency, such as the enzyme-to-enzyme tunnelling of specific glycolytic intermediates.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验