Suppr超能文献

Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats.

作者信息

Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H

机构信息

Department of Pharmacology, Osaka City University Medical School, Japan.

出版信息

Hypertension. 1995 Jun;25(6):1252-9. doi: 10.1161/01.hyp.25.6.1252.

Abstract

Cardiac phenotypic modulation and remodeling appear to be involved in the pathophysiology of cardiac hypertrophy and heart failure. We undertook this study to examine whether angiotensin II (Ang II) in vivo, independent of blood pressure, contributes to cardiac phenotypic modulation and remodeling. A low dose (200 ng/kg per minute) of Ang II was continuously infused into rats by osmotic minipump for 24 hours or 3 or 7 days to examine the effects on the expression of cardiac phenotype-related or fibrosis-related genes. This Ang II dose caused a small and gradual increase in blood pressure over 7 days. Left ventricular mRNAs for skeletal alpha-actin, beta-myosin heavy chain, atrial natriuretic polypeptide, and fibronectin were already increased by 6.9-, 1.8-, 4.8-, and 1.5-fold, respectively, after 24 hours of Ang II infusion and by 6.9-, 3.3-, 7.5-, and 2.5-fold, respectively, after 3 days, whereas ventricular alpha-myosin heavy chain and smooth muscle alpha-actin mRNAs were not significantly altered by Ang II infusion. Ventricular transforming growth factor-beta 1 and types I and III collagen mRNA levels did not increase at 24 hours and began to increase by 1.4-, 2.8-, and 2.1-fold, respectively, at 3 days. An increase in left ventricular weight occurred 3 days after Ang II infusion. Treatment with TCV-116 (3 mg/kg per day), a nonpeptide selective angiotensin type 1 receptor antagonist, completely inhibited the above-mentioned Ang II-induced increases in ventricular gene expressions and weight. Hydralazine (10 mg/kg per day), which completely normalized blood pressure, did not block cardiac hypertrophy or increased cardiac gene expressions by Ang II.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验