Suppr超能文献

Secretion from permeabilised mast cells is enhanced by addition of gelsolin: contrasting effects of endogenous gelsolin.

作者信息

Borovikov Y S, Norman J C, Price L S, Weeds A, Koffer A

机构信息

Institute of Cytology, Russian Academy of Sciences, St. Petersburg.

出版信息

J Cell Sci. 1995 Feb;108 ( Pt 2):657-66. doi: 10.1242/jcs.108.2.657.

Abstract

Permeabilised rat mast cells were exposed to gelsolin and its N-terminal half (S1-3), proteins that sever actin filaments in a calcium-dependent and independent manner, respectively. Gelsolin and S1-3 induced a decrease in cellular F-actin content and an increase in the extent of the secretory response. The calcium sensitivities of both these effects were consistent with the differential calcium requirements of the two proteins. Segment 1 (S1), which binds G-actin and caps filaments but does not sever them, did not show these effects. Thus, secretion of mast cells is promoted as a consequence of the severing activity of exogenous gelsolin or S1-3. Most of the endogenous gelsolin remained within permeabilised, washed mast cells and its distribution in resting state was predominantly cortical. Addition of calcium in the absence of MgATP did not reduce the F-actin content; by contrast, calcium with MgATP induced F-actin loss that was unaffected by the presence of anti-gelsolin. Because this antibody inhibits the severing activity of gelsolin, these results indicate that in permeabilised mast cells the severing activity of the remaining endogenous gelsolin is not involved in cortical actin filaments disassembly. Upon exposure to GTP-gamma-S in the absence of calcium, the content of cortical gelsolin was reduced. This parallels our previous observation of a GTP-gamma-S induced reduction of cortical actin filaments followed by their relocation to the cell's interior (Norman et al. (1994) J. Cell Biol. 126, 1005-1015) and suggests that actin redistribution may be a consequence of dissociation of gelsolin caps brought about by activation of a GTP-binding protein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验