Chenevert S W, Fossett N G, Chang S H, Tsigelny I, Baker M E, Lee W R
Institute for Mutagenesis, Louisiana State University, Baton Rouge 70803-1725, USA.
Biochem J. 1995 Jun 1;308 ( Pt 2)(Pt 2):419-23. doi: 10.1042/bj3080419.
We have determined the nucleotide sequences of eight ethyl methanesulphonate-induced mutants in Drosophila alcohol dehydrogenase (ADH), of which six were previously characterized by Hollocher and Place [(1988) Genetics 116, 253-263 and 265-274]. Four of these ADH mutants contain a single amino acid change: glycine-17 to arginine, glycine-93 to glutamic acid, alanine-159 to threonine, and glycine-184 to aspartic acid. Although these mutants are inactive, three mutants (Gly17Arg, Gly93Glu and Gly184Asp) form stable homodimers, as well as heterodimers with wild-type ADH, in which the wild-type ADH subunit retains full enzyme activity [Hollocher and Place (1988) Genetics 116, 265-274]. Interestingly, the Ala159Thr mutant does not form either stable homodimers or heterodimers with wild-type ADH, suggesting that alanine-159 is important in stabilizing ADH dimers. The mutations were analysed in terms of a three-dimensional model of ADH using bacterial 20 beta-hydroxysteroid dehydrogenase and rat dihydropteridine reductase as templates. The model indicates that mutations in glycine-17 and glycine-93 affect the binding of NAD+. It also shows that alanine-159 is part of a hydrophobic anchor on the dimer interface of ADH. Replacement of alanine-159 with threonine, which has a larger side chain and can hydrogen bond with water, is likely to reduce the strength of the hydrophobic interaction. The three-dimensional model shows that glycine-184 is close to the substrate binding site. Replacement of glycine-184 with aspartic acid is likely to alter the position of threonine-186, which we propose hydrogen bonds to the carboxamide moiety of NAD+. Also, the negative charge on the aspartic acid side chain may interact with the substrate and/or residues in the substrate binding site. These mutations provide information about ADH catalysis and the stability of dimers, which may also be useful in understanding homologous dehydrogenases, which include the human 17 beta-hydroxysteroid, 11 beta-hydroxysteroid and 15-hydroxyprostaglandin dehydrogenases.
我们已经确定了果蝇乙醇脱氢酶(ADH)中8个甲磺酸乙酯诱导突变体的核苷酸序列,其中6个突变体先前已由霍洛彻和普莱斯鉴定过[(1988年)《遗传学》116卷,253 - 263页和265 - 274页]。这些ADH突变体中有4个包含单个氨基酸变化:甘氨酸 - 17突变为精氨酸、甘氨酸 - 93突变为谷氨酸、丙氨酸 - 159突变为苏氨酸、甘氨酸 - 184突变为天冬氨酸。尽管这些突变体没有活性,但3个突变体(Gly17Arg、Gly93Glu和Gly184Asp)能形成稳定的同二聚体,以及与野生型ADH形成异二聚体,其中野生型ADH亚基保留了全部酶活性[霍洛彻和普莱斯(1988年)《遗传学》116卷,265 - 274页]。有趣的是,Ala159Thr突变体既不与野生型ADH形成稳定的同二聚体,也不形成异二聚体,这表明丙氨酸 - 159对于稳定ADH二聚体很重要。利用细菌20β - 羟基类固醇脱氢酶和大鼠二氢蝶啶还原酶作为模板,根据ADH的三维模型对这些突变进行了分析。该模型表明,甘氨酸 - 17和甘氨酸 - 93中的突变会影响NAD⁺的结合。它还表明丙氨酸 - 159是ADH二聚体界面上疏水锚的一部分。用侧链较大且能与水形成氢键的苏氨酸取代丙氨酸 - 159,可能会降低疏水相互作用的强度。三维模型显示甘氨酸 - 184靠近底物结合位点。用天冬氨酸取代甘氨酸 - 184可能会改变苏氨酸 - 186的位置,我们推测它与NAD⁺的羧酰胺部分形成氢键。此外,天冬氨酸侧链上的负电荷可能与底物和/或底物结合位点中的残基相互作用。这些突变提供了有关ADH催化作用和二聚体稳定性的信息,这对于理解同源脱氢酶也可能有用,同源脱氢酶包括人类17β - 羟基类固醇脱氢酶、11β - 羟基类固醇脱氢酶和15 - 羟基前列腺素脱氢酶。