Luthria D L, Baykousheva S P, Sprecher H
Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.
J Biol Chem. 1995 Jun 9;270(23):13771-6. doi: 10.1074/jbc.270.23.13771.
The pathway for the peroxisomal beta-oxidation of arachidonic acid (5,8,11,14-20:4) was elucidated by comparing its metabolism with 4,7,10-hexadecatrienoic acid (4,7,10-16:3) and 5,8-tetradecadienoic acid (5,8-14:2) which are formed, respectively, after two and three cycles of arachidonic acid degradation. When [1-14C]4,7,10-16:3 was incubated with peroxisomes in the presence of NAD+ and NADPH, it resulted in a time-dependent increase in the production of acid-soluble radioactivity which was accompanied by the synthesis of 2-trans-4,7,10-hexadecatetraenoic acid and two 3,5,7,10-hexadecatetraenoic acid isomers. The formation of conjugated trienoic acids suggests that peroxisomes contain delta 3,5,delta 2,4-dienoyl-CoA isomerase with the ability to convert 2-trans-4,7,10-hexadecatetraenoic acid to 3,5,7,10-hexadecatetraenoic acid. When 1-14C-labeled 6,9,12-octadecatrienoic acid or 7,10,13,16-docosatetraenoic acid was incubated without nucleotides, the 3-hydroxy metabolites accumulated, since further degradation requires NAD(+)-dependent 3-hydroxyacyl-CoA dehydrogenase. When [1-14C]5,8,11,14-20:4 was incubated under identical conditions, no polar metabolite was detected, but 2-trans-4,8,11,14-eicosapentaenoic acid accumulated. When NADPH was added to incubations, 3-hydroxy-8,11,14-eicosatrienoic, 2-trans-4,8,11,14-eicosapentaenoic, 2-trans-8,11,14-eicosatetraenoic, and 8,11,14-eicosatrienoic acids were produced. Analogous compounds were formed from [1-14C]5,8-14:2. Our results show that the removal of double bonds from odd-numbered carbons in arachidonic acid thus requires both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5,delta 2,4-dienoyl-CoA isomerase. One complete cycle of 5,8-14:2 and 5,8,11,14-20:4 beta-oxidation yields, respectively, 6-dodecenoic and 6,9,12-octadecatrienoic acids.
通过比较花生四烯酸(5,8,11,14-20:4)与4,7,10-十六碳三烯酸(4,7,10-16:3)和5,8-十四碳二烯酸(5,8-14:2)的代谢情况,阐明了花生四烯酸在过氧化物酶体中的β-氧化途径,这两种酸分别在花生四烯酸降解两个和三个循环后形成。当[1-14C]4,7,10-16:3在NAD+和NADPH存在的情况下与过氧化物酶体一起孵育时,酸溶性放射性产物随时间增加,同时伴有2-反式-4,7,10-十六碳四烯酸和两种3,5,7,10-十六碳四烯酸异构体的合成。共轭三烯酸的形成表明过氧化物酶体含有δ3,5、δ2,4-二烯酰辅酶A异构酶,能够将2-反式-4,7,10-十六碳四烯酸转化为3,5,7,10-十六碳四烯酸。当1-14C标记的6,9,12-十八碳三烯酸或7,10,13,16-二十二碳四烯酸在没有核苷酸的情况下孵育时,3-羟基代谢产物会积累,因为进一步降解需要NAD(+)-依赖的3-羟基酰基辅酶A脱氢酶。当[1-14C]5,8,11,14-20:4在相同条件下孵育时,未检测到极性代谢产物,但2-反式-4,8,11,14-二十碳五烯酸积累。当向孵育体系中加入NADPH时,会产生3-羟基-8,11,14-二十碳三烯酸、2-反式-4,8,11,14-二十碳五烯酸、2-反式-8,11,14-二十碳四烯酸和8,11,14-二十碳三烯酸。由[1-14C]5,8-14:2也形成了类似的化合物。我们的结果表明,花生四烯酸奇数碳上双键的去除需要NADPH依赖的2,4-二烯酰辅酶A还原酶和δ3,5、δ2,4-二烯酰辅酶A异构酶。5,8-14:2和5,8,11,14-20:4的一个完整β-氧化循环分别产生6-十二碳烯酸和6,9,12-十八碳三烯酸。