Chen Q, Luthria D L, Sprecher H
Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.
Arch Biochem Biophys. 1998 Jan 15;349(2):371-5. doi: 10.1006/abbi.1997.0461.
The biosynthesis of 4,7,10,13,16-22:5 and 4,7,10,13,16,19-22:6 requires that when 6,9,12,15,18-24:5 and 6,9,12,15,18,21-24:6 are produced in microsomes they must move to peroxisomes for partial beta-oxidation. When the 24-carbon acids were incubated with peroxisomes, 22-carbon acids with their first double bond at position 4 accumulated as did those with their first two double bonds at the 2-trans-4-cis-positions (D. L. Luthria, S. B. Mohammed, and H. Sprecher, J. Biol. Chem. 271, 16020-16025, 1996; and B. S. Mohammed, D. L. Luthria, S. P. Baykousheva, and H. Sprecher, Biochem. J., 326, 425-430, 1997). In the study reported here we analyzed the acyl-CoAs that accumulated when peroxisomes were incubated with 5,8,11,14-20:4 and 6,9,12-18:3, a metabolite that would be produced via one cycle of arachidonate degradation via the pathway requiring both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5, delta 2,4-dienoyl-CoA isomerase. With both substrates the acyl-CoAs of 2-trans-4-10:2, 4-10:1, 2-trans-4,7,10-16:4, and 4,7,10-16:3 accumulated. These results further establish that the reductase catalyzes a control step in the peroxisomal degradation of unsaturated fatty acids. It was not possible to detect any 18- or 12-carbon acyl-CoA when arachidonate was the substrate, nor did any 12-carbon catabolite accumulate from 6,9,12-18:3. The fractional amount of 5,8-14:2 and arachidonate catabolized via the pathway using only the enzymes of saturated fatty acid degradation versus the pathway that also uses the reductase and the isomerase could thus not be estimated.
4,7,10,13,16-22:5和4,7,10,13,16,19-22:6的生物合成要求,当微粒体中产生6,9,12,15,18-24:5和6,9,12,15,18,21-24:6时,它们必须转移到过氧化物酶体进行部分β-氧化。当将24碳脂肪酸与过氧化物酶体一起温育时,第一个双键位于4位的22碳脂肪酸以及前两个双键位于2反-4顺-位置的22碳脂肪酸会积累(D. L. 卢斯里亚、S. B. 穆罕默德和H. 施普雷彻,《生物化学杂志》271, 16020 - 16025, 1996;以及B. S. 穆罕默德、D. L. 卢斯里亚、S. P. 贝库舍娃和H. 施普雷彻,《生物化学杂志》326, 425 - 430, 1997)。在本报告的研究中,我们分析了用过氧化物酶体与5,8,11,14-20:4和6,9,12-18:3温育时积累的酰基辅酶A,6,9,12-18:3是一种通过花生四烯酸降解的一个循环产生的代谢物,该降解途径需要依赖NADPH的2,4-二烯酰辅酶A还原酶和δ3,5、δ2,4-二烯酰辅酶A异构酶。对于这两种底物,2反-4-10:2、4-10:1、2反-4,7,10-16:4和4,7,10-16:3的酰基辅酶A都积累了。这些结果进一步证实,该还原酶催化了过氧化物酶体中不饱和脂肪酸降解的一个控制步骤。当以花生四烯酸为底物时,无法检测到任何18碳或12碳的酰基辅酶A,6,9,12-18:3也没有积累任何12碳的分解代谢物。因此,无法估计通过仅使用饱和脂肪酸降解酶的途径与同时使用还原酶和异构酶的途径代谢的5,8-14:2和花生四烯酸的比例。