Suppr超能文献

Cell death, gliosis, and synaptic remodeling in the hippocampus of epileptic rats.

作者信息

Represa A, Niquet J, Pollard H, Ben-Ari Y

机构信息

INSERM U29, Hôpital de Port Royal, Paris, France.

出版信息

J Neurobiol. 1995 Mar;26(3):413-25. doi: 10.1002/neu.480260313.

Abstract

Seizures set in motion complex molecular and morphological changes in vulnerable structures, such as the hippocampal complex. A number of these changes are responsible for neuronal death of CA3 and hilar cells, which involves necrotic and apoptotic mechanisms. In surviving dentate granule cells seizures induce an increased expression of tubulin subunits and microtubule-associated proteins, suggesting that an overproduction of tubulin polymers would lead to a remodeling of mossy fibers (the axons of granule cells). In fact, these fibers sprout in the dentate gyrus to innervate granule cell dendrites, creating recurrent excitatory circuits. In contrast, terminal mossy fibers do not sprout in the CA3 field. Navigation of mossy fiber's growth cones may be facilitated by astrocytes, which would exert differential effects by producing and excreting cell adhesion and substrate molecules. In the light of the results discussed here, we suggest that in adult brain activated-resident astrocytes (nonproliferating, tenascin-negative, neuronal cell-adhesion molecule-positive astrocytes) could contribute to the process of axonal outgrowth and synaptogenesis in the dentate gyrus, while proliferating astrocytes, tenascin-positive, could impede any axonal rearrangement in CA3.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验