Suppr超能文献

通过改进波形优化除颤。

Optimizing defibrillation through improved waveforms.

作者信息

Block M, Breithardt G

机构信息

Hospital of the Westfälische Wilhelms-University of Münster, Department of Cardiology/Angiology, Germany.

出版信息

Pacing Clin Electrophysiol. 1995 Mar;18(3 Pt 2):526-38. doi: 10.1111/j.1540-8159.1995.tb02563.x.

Abstract

Defibrillation of the heart is achieved if an electrical current depolarizes the majority of the unsynchronized fibrillating myocardial cells. The applied current or the corresponding voltage described as a function of time is called the waveform. In pacing, to stimulate myocardial cells close to the electrode, a relatively low voltage is needed for a relatively brief duration. However, in defibrillation, approximately a 100-fold higher voltage is needed and achieved by the use of capacitors. The exponential voltage decay of a capacitor during its discharge determines the basic waveform for defibrillation. In an attempt to lower the energy needed for defibrillation, the steepness of the decay (different capacitances), the duration (fixed duration waveforms) or tilt (fixed tilt waveforms), or the initial polarity can be changed. Additionally, the polarity of the electrodes can be reversed during the discharge of the capacitor once (biphasic waveform) or twice (triphasic waveform). If two capacitors and defibrillation pathways are available, bidirectional defibrillation pulses can be delivered sequentially. In humans, the original standard waveform used with endocardial leads was a single monophasic pulse delivered by a 125-microF capacitor using the endocardial right ventricular electrode as cathode. It is now known that a reversal of the initial polarity and a reversal of polarity during capacitor discharge may significantly lower the energy needed for defibrillation, thereby preventing formerly frequent failures of defibrillation with endocardial lead systems. The use of sequential pulses showed no or only slight reductions of energy requirements and was abandoned due to the additional electrode needed. The use of a smaller capacitance (60-90 microF reduced maximum energy output but generally did not reduce energy requirements for defibrillation. However, with more efficient electrodes, smaller capacitances that will help to reduce the size of the defibrillator might be used. Thus, today defibrillation is optimized with respect to energy, capacitor size, and ease of implantation if an approximately 90-microF capacitor is used to deliver a biphasic pulse via a bipolar lead system using the right ventricular electrode as anode.

摘要

如果电流使大多数非同步颤动的心肌细胞去极化,就能实现心脏除颤。所施加的电流或作为时间函数描述的相应电压称为波形。在起搏时,为刺激靠近电极的心肌细胞,需要在相对较短的持续时间内施加相对较低的电压。然而,在除颤时,所需电压大约高100倍,这通过使用电容器来实现。电容器放电期间的指数电压衰减决定了除颤的基本波形。为了降低除颤所需的能量,可以改变衰减的陡度(不同电容)、持续时间(固定持续时间波形)或倾斜度(固定倾斜度波形),或者初始极性。此外,在电容器放电期间,电极的极性可以反转一次(双相波形)或两次(三相波形)。如果有两个电容器和除颤路径,则可以顺序发送双向除颤脉冲。在人类中,最初用于心内膜导联的标准波形是由一个125微法的电容器通过将心内膜右心室电极作为阴极发送的单个单相脉冲。现在已知,初始极性的反转以及电容器放电期间极性的反转可能会显著降低除颤所需的能量,从而防止以前心内膜导联系统频繁出现除颤失败的情况。顺序脉冲的使用显示能量需求没有降低或仅略有降低,并且由于需要额外的电极而被放弃。使用较小的电容(60 - 90微法)可降低最大能量输出,但通常不会降低除颤所需的能量。然而,使用更高效的电极时,可能会使用有助于减小除颤器尺寸的较小电容。因此,如今,如果使用一个大约90微法的电容器通过以右心室电极作为阳极的双极导联系统发送双相脉冲,那么除颤在能量、电容器尺寸和植入便利性方面都得到了优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验