Suppr超能文献

Sucrose-derived exopolymers have site-dependent roles in Streptococcus mutans-promoted dental decay.

作者信息

Munro C L, Michalek S M, Macrina F L

机构信息

Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA.

出版信息

FEMS Microbiol Lett. 1995 May 15;128(3):327-32. doi: 10.1111/j.1574-6968.1995.tb07544.x.

Abstract

We have constructed a panel of mutants of S. mutans V403 which are defective in one or more of the glucosyltransferase genes (gtfB, C or D) or the fructosyltransferase gene (ftf). These strains have been tested for virulence in a gnotobiotic rat caries model with reference to both buccal (smooth surface) and sulcal (pit and fissure) carious lesions. Our data suggest differing roles for degradable and non-degradable polymers at buccal and sulcal sites. Non-degradable polymers (made by products of the gtfB and C genes) contributed significantly to the severity of smooth surface lesions. However, our studies suggested their role in pit and fissure lesions was not as important as the role of degradable polymers. Specifically, a mutant deficient in the major insoluble glucan synthesizing activity (product of the gtfB gene) was 25% more cariogenic on sulcal surfaces than was the wild-type V403 strain. We propose that extracellular glucosyltransferases and fructosyltransferase compete for sucrose and that this competition influences pathogenicity at differing tooth sites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验