The changes in the GABAA/benzodiazepine receptor in chicken brain during development has been studied by using 3H-flunitrazepam as the probe for the benzodiazepine modulator site and the antibodies recognizing the receptor protein. In the telencephalon and optic tectum, the proteins of 48, 50, and 51 kD were markedly labeled by 3H-flunitrazepam from embryonic day 18 to postnatal days, as revealed by photoaffinity labeling and SDS-PAGE of the brain membranes; the 51-kD protein appeared to be the predominant one in labeling intensity except at embryonic day 18 and postnatal days 14 and 28, whereas the 47- and 50-kD proteins were dominant in the cerebellum. However, the 47- and 48-kD proteins were faintly seen after postnatal day 28 in the three regions examined. 2. Immunoblotting using a monoclonal antibody against the 50- and 51-kD proteins showed that the straining pattern in the developing telecephalon or optic tectum was similar to the 50 kD/51 kD pattern obtained from fluorography. The antibody also stained the 50- and 51-kD proteins in the cerebellum despite the fact that the 51-kD protein was barely seen in the fluorogram. Moreover, the 50-kD protein was recognized by an antiserum raised against a partial sequence of the alpha 1 subunit of the receptor expressed in bacteria. The staining levels for the 50-kd protein by the antiserum on immunoblots of the brain regions were low in embryonic animals but higher during postnatal stages, consistent with that seen in fluorograms. 3. Receptor binding autoradiography using 3H-flunitrazepam exhibited that varying degrees of labeling intensity occurred among various brain areas at different ages. High densities of binding were present in the olfactory bulb, paleostriatum, optic tectum, and midbrain. These results support the diversity of the GABAA/benzodiazepine receptor in the vertebrate CNS.