Rainwater R, Parks D, Anderson M E, Tegtmeyer P, Mann K
Biology Department, University of Alaska, Anchorage 99508, USA.
Mol Cell Biol. 1995 Jul;15(7):3892-903. doi: 10.1128/MCB.15.7.3892.
Previous studies of p53 have implicated cysteine residues in site-specific DNA binding via zinc coordination and redox regulation (P. Hainaut and J. Milner, Cancer Res. 53:4469-4473, 1993; T. R. Hupp, D. W. Meek, C. A. Midgley, and D. P. Lane, Nucleic Acids Res. 21:3167-3174, 1993). We show here that zinc binding and redox regulation are, at least in part, distinct determinants of the binding of p53 to DNA. Moreover, by substituting serine for each cysteine in murine p53, we have investigated the roles of individual cysteines in the regulation of p53 function. Substitution of serine for cysteine at position 40, 179, 274, 293, or 308 had little or no effect on p53 function. In contrast, replacement of cysteine at position 173, 235, or 239 markedly reduced in vitro DNA binding, completely blocked transcriptional activation, and led to a striking enhancement rather than a suppression of transformation by p53. These three cysteines have been implicated in zinc binding by X-ray diffraction studies (Y. Cho, S. Gorina, P.D. Jeffrey, and N.P. Pavletich, Science 265:346-355, 1994); our studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to bind zinc. Lastly, substitutions for cysteines at position 121, 132, 138, or 272 partially blocked both transactivation and the suppression of transformation by p53. These four cysteines are located in the loop-sheet-helix region of the site-specific DNA-binding domain of p53. Like the cysteines in the zinc-binding region, therefore, these cysteines may cooperate to modulate the structure of the DNA-binding domain. Our findings argue that p53 is subject to more than one level of conformational modulation through oxidation-reduction of cysteines at or near the p53-DNA interface.
先前对p53的研究表明,半胱氨酸残基通过锌配位和氧化还原调节参与位点特异性DNA结合(P. 海纳特和J. 米尔纳,《癌症研究》53:4469 - 4473,1993;T.R. 赫普、D.W. 米克、C.A. 米德格利和D.P. 莱恩,《核酸研究》21:3167 - 3174,1993)。我们在此表明,锌结合和氧化还原调节至少部分是p53与DNA结合的不同决定因素。此外,通过将小鼠p53中的每个半胱氨酸替换为丝氨酸,我们研究了单个半胱氨酸在p53功能调节中的作用。将丝氨酸替换第40、179、274、293或308位的半胱氨酸对p53功能几乎没有影响。相反,替换第173、235或239位的半胱氨酸显著降低了体外DNA结合能力,完全阻断了转录激活,并导致p53介导的转化显著增强而非抑制。X射线衍射研究表明这三个半胱氨酸参与锌结合(Y. 赵、S. 戈里纳、P.D. 杰弗里和N.P. 帕夫莱蒂奇,《科学》265:346 - 355,1994);我们的研究证明了p53中央DNA结合结构域无法结合锌的功能后果。最后,替换第121、132、138或272位的半胱氨酸部分阻断了p53的反式激活和对转化的抑制。这四个半胱氨酸位于p53位点特异性DNA结合结构域的环 - 片 - 螺旋区域。因此,与锌结合区域的半胱氨酸一样,这些半胱氨酸可能协同调节DNA结合结构域的结构。我们的研究结果表明,通过p53 - DNA界面处或附近半胱氨酸的氧化还原作用,p53受到不止一种水平的构象调节。