Pisoni R L, Velilla V Q
Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor 48109-2029, USA.
Biochim Biophys Acta. 1995 May 24;1236(1):23-30. doi: 10.1016/0005-2736(95)00039-6.
Previously, we observed that the activity of the cysteine-specific lysosomal transport system increases 7-10-fold between pH 6 and 7.3 to be maximally active in the neutral pH range. To understand what factors contribute to this pH dependence, different chemical modifying agents were used to probe the nature of amino acid residues residing in the transport protein binding site. Diethyl pyrocarbonate (1 mM) and N-ethylmaleimide (5 mM) each strongly inactivated lysosomal cysteine uptake > or = 88%, whereas dicyclohexyl-carbodiimide (2.5 mM), phenylisothiocyanate (2 mM), N-acetylimidazole (33 mM), and phenylglyoxal (2 mM) had a moderate to small effect. Maximal inactivation by DEPC occurs within 12-15 min upon exposure to DEPC concentrations > or = 1 mM. DEPC inactivation is consistent with modification of a histidine residue, displaying no inactivation at pH < 6, half-maximal inactivation at pH 6.6, and maximal inactivation at pH > or = 7.3. The close correspondence of DEPC inactivation to the pH activity curve of cysteine uptake suggests the large increase in lysosomal cysteine transport activity between pH 6 and 7.3 reflects deprotonation of an essential histidine residue. The substrate, L-cysteine (4 mM), fully protects the transport protein from DEPC inactivation suggesting that this histidine residue is located in the carrier's substrate binding site. Finally, part of the pH dependence of the lysosomal cysteine carrier appears to be due to responsiveness to the lysosomal transmembrane proton gradient as indicated by lysosomal membrane vesicles which display a 1.5-fold greater rate of cysteine uptake when pH 7.4out > pH 5.3in than when pH 7.4out = pH 7.4in.
此前,我们观察到,半胱氨酸特异性溶酶体转运系统的活性在pH 6至7.3之间增加7至10倍,在中性pH范围内达到最大活性。为了解哪些因素导致这种pH依赖性,我们使用了不同的化学修饰剂来探究转运蛋白结合位点中氨基酸残基的性质。焦碳酸二乙酯(1 mM)和N-乙基马来酰亚胺(5 mM)均可使溶酶体对半胱氨酸的摄取强烈失活≥88%,而二环己基碳二亚胺(2.5 mM)、异硫氰酸苯酯(2 mM)、N-乙酰咪唑(33 mM)和苯乙二醛(2 mM)的影响则为中度至轻度。当暴露于浓度≥1 mM的焦碳酸二乙酯时,12至15分钟内即可发生最大程度的失活。焦碳酸二乙酯失活与组氨酸残基的修饰一致,在pH < 6时无失活,在pH 6.6时失活程度达到一半,在pH≥7.3时达到最大失活。焦碳酸二乙酯失活与半胱氨酸摄取的pH活性曲线密切对应,表明pH 6至7.3之间溶酶体半胱氨酸转运活性的大幅增加反映了一个必需组氨酸残基的去质子化。底物L-半胱氨酸(4 mM)可完全保护转运蛋白免受焦碳酸二乙酯失活,表明该组氨酸残基位于载体的底物结合位点。最后,溶酶体半胱氨酸载体的部分pH依赖性似乎是由于对溶酶体跨膜质子梯度的响应,溶酶体膜囊泡显示,当pH7.4外>pH5.3内时,半胱氨酸摄取速率比pH7.4外 = pH7.4内时高1.5倍。