Suppr超能文献

Neural network assisted cardiac auscultation.

作者信息

Cathers I

机构信息

Faculty of Health Sciences, University of Sydney, Lidcombe, NSW, Australia.

出版信息

Artif Intell Med. 1995 Feb;7(1):53-66. doi: 10.1016/0933-3657(94)00026-o.

Abstract

Traditional cardiac auscultation involves a great deal of interpretive skill. Neural networks were trained as phonocardiographic classifiers to determine their viability in this rôle. All networks had three layers and were trained by backpropagation using only the heart sound amplitude envelope as input. The main aspect of the study was to determine what topologies, gain and momentum factors lead to efficient training for this application. Neural networks which are trained with heart sound classes of greater similarity were found to be less likely to converge to a solution. A prototype normal/abnormal classifier was also developed which provided excellent classification accuracy despite the sparse nature of the training data. Future directions for the development of a full-scale computer-assisted phonocardiographic classifier are also considered.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验