Suppr超能文献

一种基于不规则性测量并使用支持向量机的心脏状态识别方法

An Irregularity Measurement Based Cardiac Status Recognition Using Support Vector Machine.

作者信息

Banerjee Poulami, Mondal Ashok

机构信息

Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India.

出版信息

J Med Eng. 2015;2015:327534. doi: 10.1155/2015/327534. Epub 2015 Oct 27.

Abstract

An automated robust feature extraction technique is proposed in this paper based on inherent structural distribution of heart sound to analyze the phonocardiogram signal in presence of environmental noise and interference of lung sound signal. The structural complexity of the heart sound signal is estimated in terms of sample entropy using a nonlinear signal processing framework. The effectiveness of the feature is evaluated using a support vector machine under two different circumstances which include Gaussian noise and pulmonary perturbation. The analysis framework has been executed on a composite data set of 60 healthy and 60 pathological individuals for different SNR levels (-5 to 10 dB) and the performance accuracy is close to that of the clean signal. In addition, a comparative study has been done with conventional approaches which includes waveform analysis, spectral domain inspection, and spectrogram evaluation. The experimental results show that sample entropy based classification method gives an accuracy of 96.67% for clean data and 91.66% for noisy data of SNR 10 dB. The result suggests that the proposed method performs significantly well over the visual and audio test.

摘要

本文提出了一种基于心音固有结构分布的自动鲁棒特征提取技术,用于在存在环境噪声和肺音信号干扰的情况下分析心音图信号。使用非线性信号处理框架,通过样本熵估计心音信号的结构复杂性。在包括高斯噪声和肺部干扰的两种不同情况下,使用支持向量机评估特征的有效性。该分析框架已在60名健康人和60名病理个体的复合数据集上针对不同的信噪比水平(-5至10dB)执行,性能准确率接近纯净信号。此外,还与包括波形分析、频谱域检查和频谱图评估在内的传统方法进行了比较研究。实验结果表明,基于样本熵的分类方法对纯净数据的准确率为96.67%,对信噪比为10dB的噪声数据的准确率为91.66%。结果表明,所提出的方法在视觉和音频测试中表现显著良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b5/4782624/dbed5a3346a1/JME2015-327534.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验