Boushel R, Ara I, Gnaiger E, Helge J W, González-Alonso J, Munck-Andersen T, Sondergaard H, Damsgaard R, van Hall G, Saltin B, Calbet J A L
The Copenhagen Muscle Research Centre, Copenhagen, Denmark; The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
Acta Physiol (Oxf). 2014 May;211(1):122-34. doi: 10.1111/apha.12258. Epub 2014 Mar 17.
It is an ongoing discussion the extent to which oxygen delivery and oxygen extraction contribute to an increased muscle oxygen uptake during dynamic exercise. It has been proposed that local muscle factors including the capillary bed and mitochondrial oxidative capacity play a large role in prolonged low-intensity training of a small muscle group when the cardiac output capacity is not directly limiting. The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low-intensity exercise training alters regional muscle VO2 .
In nine healthy volunteers (seven males, two females), haemodynamic and metabolic responses to incremental arm cycling were measured by the Fick method and biopsy of the deltoid and triceps muscles before and after 42 days of skiing for 6 h day(-1) at 60% max heart rate.
Peak pulmonary VO2 during arm crank was unchanged after training (2.38 ± 0.19 vs. 2.18 ± 0.2 L min(-1) pre-training) yet arm VO2 (1.04 ± 0.08 vs. 0.83 ± 0.1 L min(1) , P < 0.05) and power output (137 ± 9 vs. 114 ± 10 Watts) were increased along with a higher arm blood flow (7.9 ± 0.5 vs. 6.8 ± 0.6 L min(-1) , P < 0.05) and expanded muscle capillary volume (76 ± 7 vs. 62 ± 4 mL, P < 0.05). Muscle O2 diffusion capacity (16.2 ± 1 vs. 12.5 ± 0.9 mL min(-1) mHg(-1) , P < 0.05) and O2 extraction (68 ± 1 vs. 62 ± 1%, P < 0.05) were enhanced at a similar mean capillary transit time (569 ± 43 vs. 564 ± 31 ms) and P50 (35.8 ± 0.7 vs. 35 ± 0.8), whereas mitochondrial O2 flux capacity was unchanged (147 ± 6 mL kg min(-1) vs. 146 ± 8 mL kg min(-1) ).
The mechanisms underlying the increase in peak arm VO2 with prolonged low-intensity training in previously untrained subjects are an increased convective O2 delivery specifically to the muscles of the arm combined with a larger capillary-muscle surface area that enhance diffusional O2 conductance, with no apparent role of mitochondrial respiratory capacity.
关于在动态运动过程中氧输送和氧摄取对肌肉摄氧量增加的贡献程度,一直存在着讨论。有人提出,当心输出量能力并非直接限制因素时,包括毛细血管床和线粒体氧化能力在内的局部肌肉因素在小肌肉群的长时间低强度训练中起很大作用。本研究的目的是调查长时间低强度运动训练改变局部肌肉摄氧量的循环和肌肉代谢机制的相对作用。
在9名健康志愿者(7名男性,2名女性)中,通过Fick法测量递增式手臂骑行时的血流动力学和代谢反应,并在以最大心率的60%每天滑雪6小时,持续42天后,对三角肌和肱三头肌进行活检。
训练后手臂曲柄运动时的峰值肺摄氧量未发生变化(训练前为2.38±0.19对2.18±0.2升/分钟),但手臂摄氧量(1.04±0.08对0.83±0.1升/分钟,P<0.05)和功率输出(137±9对114±10瓦)增加,同时手臂血流量增加(7.9±0.5对6.8±0.6升/分钟,P<0.05),肌肉毛细血管容积扩大(76±7对62±4毫升,P<0.05)。在相似的平均毛细血管通过时间(569±43对564±31毫秒)和P50(35.8±0.7对35±0.8)下,肌肉氧扩散能力(16.2±1对12.5±0.9毫升/分钟·毫米汞柱-1,P<0.05)和氧摄取(68±1对62±1%,P<0.05)增强,而线粒体氧通量能力未发生变化(147±6对146±8毫升/千克·分钟)。
在之前未经训练的受试者中,长时间低强度训练使手臂峰值摄氧量增加的潜在机制是对流性氧输送特别是向手臂肌肉的输送增加,以及更大的毛细血管-肌肉表面积增强了扩散性氧传导,而线粒体呼吸能力无明显作用。