Suppr超能文献

使用广义轮廓操作的组间序列比对方法的进一步改进。

Further improvement in methods of group-to-group sequence alignment with generalized profile operations.

作者信息

Gotoh O

机构信息

Department of Biochemistry, Saitama Cancer Center Research Institute, Japan.

出版信息

Comput Appl Biosci. 1994 Jul;10(4):379-87. doi: 10.1093/bioinformatics/10.4.379.

Abstract

It has previously been shown that rigorous optimization of alignment between two groups of sequences in the sense of minimal sum of pairs (SP) score with a linear gap-weighting function can be achieved by an extended version of the dynamic programming algorithm. The major drawback of this algorithm was that the computation time grows in proportion to the product of the numbers (M and N) of sequences comprising the two groups. A new algorithm presented in this paper achieves the same rigorous alignment in a time complexity much less dependent on the sizes of the groups. Examinations with many groups of sequences indicated that the new algorithm runs faster than the earlier one when M x N > 6-10, approximately 10 times faster when M x N approximately 200, and > 100 times faster when M x N > 2500. This computational acceleration facilitates application of the algorithm to alignment of large groups, especially in the framework of iterative refinement strategies.

摘要

先前已经表明,通过动态规划算法的扩展版本,可以在具有线性间隙加权函数的最小配对和(SP)得分的意义上,对两组序列之间的比对进行严格优化。该算法的主要缺点是计算时间与构成两组的序列数量(M和N)的乘积成比例增长。本文提出的一种新算法在时间复杂度上实现了相同的严格比对,且对组大小的依赖性要小得多。对多组序列的检验表明,当M×N>6 - 10时,新算法比早期算法运行得更快;当M×N约为200时,速度快约10倍;当M×N>2500时,速度快>100倍。这种计算加速有助于将该算法应用于大组的比对,特别是在迭代细化策略的框架内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验