Parsek M R, McFall S M, Shinabarger D L, Chakrabarty A M
Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612.
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12393-7. doi: 10.1073/pnas.91.26.12393.
The soil bacteria Pseudomonas putida can use benzoate or 3-chlorobenzoate as a sole carbon source. Benzoate and 3-chlorobenzoate are converted into catechol and 3-chlorocatechol, respectively, which are in turn converted into tricarboxylic acid cycle intermediates. The catabolic pathways of both compounds proceed through similar intermediates, have similar genetic organization, and have homologous enzymes responsible for different catabolic steps. This has led to suggestions that the plasmid-borne 3-chlorocatechol degradation genes evolved from the chromosomal catechol degradation genes. Both catechol and 3-chlorocatechol pathways are positively regulated by the homologous regulatory proteins CatR and ClcR, respectively. These proteins belong to the LysR family of DNA binding proteins and bind to highly conserved target sequences. We examined the ability of CatR and ClcR to cross-regulate the two pathways. CatR was shown in vitro by DNase I footprinting and gel-shift assays to interact with the clcABD promoter region. Likewise, ClcR was shown to interact in vitro with the catBC promoter region. In in vivo experiments, CatR complemented a ClcR- P. putida strain harboring the clcABD operon for growth on 3-chlorobenzoate. However, ClcR was not capable of complementing a CatR- P. putida strain for growth on benzoate. These observations were confirmed by lacZ-transcriptional fusion expression experiments. Differences in the CatR and ClcR binding sites and their in vitro binding characteristics may explain the ability of CatR and not ClcR to cross-activate. These differences may provide insight about the evolution of regulatory systems in P. putida.
土壤细菌恶臭假单胞菌能够将苯甲酸盐或3-氯苯甲酸盐用作唯一碳源。苯甲酸盐和3-氯苯甲酸盐分别被转化为儿茶酚和3-氯儿茶酚,进而被转化为三羧酸循环中间体。这两种化合物的分解代谢途径通过相似的中间体进行,具有相似的基因组织,并且有负责不同分解代谢步骤的同源酶。这导致有人提出,质粒携带的3-氯儿茶酚降解基因是从染色体儿茶酚降解基因进化而来的。儿茶酚和3-氯儿茶酚途径分别受到同源调节蛋白CatR和ClcR的正调控。这些蛋白质属于DNA结合蛋白的LysR家族,并与高度保守的靶序列结合。我们研究了CatR和ClcR对这两条途径进行交叉调节的能力。通过DNA酶I足迹法和凝胶迁移试验在体外证明,CatR与clcABD启动子区域相互作用。同样,在体外证明ClcR与catBC启动子区域相互作用。在体内实验中,CatR对携带clcABD操纵子的ClcR缺失恶臭假单胞菌菌株在3-氯苯甲酸盐上的生长起到互补作用。然而,ClcR不能对CatR缺失恶臭假单胞菌菌株在苯甲酸盐上的生长起到互补作用。这些观察结果通过lacZ转录融合表达实验得到证实。CatR和ClcR结合位点及其体外结合特性的差异可能解释了CatR而非ClcR具有交叉激活能力的原因。这些差异可能为了解恶臭假单胞菌调节系统的进化提供线索。