Suppr超能文献

Determinants of intrarenal oxygenation. II. Hemodynamic effects.

作者信息

Brezis M, Heyman S N, Epstein F H

机构信息

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

出版信息

Am J Physiol. 1994 Dec;267(6 Pt 2):F1063-8. doi: 10.1152/ajprenal.1994.267.6.F1063.

Abstract

To study hemodynamic effects on intrarenal oxygenation, O2 microelectrodes were inserted into rat kidneys. In a previous study [M. Brezis, Y. Agmon, and F. H. Epstein. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F1059-F1062, 1994], we showed that tubular metabolism is a major determinant of intrarenal oxygenation, in part responsible for medullary hypoxia observed under basal conditions. Acute hypotension (by controlled hemorrhage, aortic ligation, or nitroprusside infusion) paradoxically increased medullary PO2 (from 21 +/- 2 to 39 +/- 2 mmHg, P < 0.001) while decreasing cortical PO2 (from 46 +/- 2 to 32 +/- 3 mmHg, P < 0.001), abolishing corticomedullary gradients of oxygen. Laser-Doppler studies indicated that, while cortical blood flow was reduced during hypotension, medullary blood flow was unchanged or increased. The increase in medullary PO2 induced by hypotension was abolished by prior administration of furosemide, suggesting that during hypotension, reduced glomerular filtration rate (GFR), distal delivery, and reabsorption result in decreased oxygen utilization. Acute infusions of atriopeptin III (0.1-1 microgram.kg-1.min-1) decreased both cortical PO2 (from 61 +/- 2 to 55 +/- 2 mmHg, P < 0.001) and medullary PO2 (from 15 +/- 1 to 7 +/- 1 mmHg, P < 0.001), consistent with atriopeptin-induced increases in GFR and tubular reabsorptive work. These data suggest that medullary oxygen availability increases during renal hypoperfusion and may decrease during renal vasodilation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验