Suppr超能文献

The delta pH-driven, ATP-independent protein translocation mechanism in the chloroplast thylakoid membrane. Kinetics and energetics.

作者信息

Brock I W, Mills J D, Robinson D, Robinson C

机构信息

Department of Biological Sciences, University of Warwick, Coventry, United Kingdom.

出版信息

J Biol Chem. 1995 Jan 27;270(4):1657-62. doi: 10.1074/jbc.270.4.1657.

Abstract

Previous studies have shown that proteins are transported across the chloroplast thylakoid membrane by two very different mechanisms, one of which requires stromal factors and ATP, whereas the other mechanism is ATP independent but completely reliant on the thylakoidal delta pH. We have examined the role of the delta pH in the latter mechanism by simultaneously monitoring the magnitude of delta pH (by 9-aminoacridine fluorescence quenching) and the rate of import of the 23-kDa photosystem II protein into isolated pea thylakoids. We show that protein import can take place, at low but significant rates, at very low values of delta pH (in the region of 1.2-1.4), and that plots of the rate of protein import against proton concentration gradient are probably hyperbolic in nature. There is no evidence for a threshold level of delta pH which is required to drive translocation of the 23-kDa protein. Addition of uncouplers midway during import incubations results in a rapid and complete inhibition of translocation, showing that the continuous presence of the delta pH is required for translocation to take place. During import into intact chloroplasts, the intermediate-size 23-kDa protein substrate for the thylakoidal protein transport machinery is found only in the stromal fraction at all values of delta pH, suggesting that the initial interaction with the machinery is relatively weak, reversible and delta pH-independent. We therefore propose that the delta pH is required for both the initiation and completion of translocation; these roles are in marked contrast to the roles of protonmotive force in mitochondrial and sec-dependent bacterial protein transport.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验