Suppr超能文献

Separation anxiety: the etiology of nondisjunction in flies and people.

作者信息

Hawley R S, Frazier J A, Rasooly R

机构信息

Department of Genetics, University of California at Davis 95616.

出版信息

Hum Mol Genet. 1994 Sep;3(9):1521-8. doi: 10.1093/hmg/3.9.1521.

Abstract

Two new studies examine the recombinational history of human chromosomes that nondisjoin at the first meiotic division in females. Our analysis of these studies suggests two possible etiologies of nondisjunction in terms of well-understood properties of chromosome mechanics. For both the X chromosome and for chromosome 21, 60-70% of nondisjoined chromosomes are derived from chiasmate bivalents, many of which display unusual patterns of exchange. The patterns of exchange and nondisjunction observed for human chromosome 21 parallel those exhibited by a mutation in Drosophila that impairs spindle assembly and function. Based on these similarities, we propose that nondisjunction of chromosome 21 in human females results from an age-dependent loss of spindle-forming ability. The recombinational histories of nondisjoining human X chromosomes are quite different from those of chromosome 21, but rather parallel those obtained for spontaneous nondisjunction in Drosophila females. The data for X chromosome disjunction in both species can be explained by a model in which nondisjunction is the consequence of the age-dependent movement of transposable elements. According to this model, nondisjunction is explained as the consequence of the repair of transposon-induced breaks in the DNA. Both models provide reasonable alternatives to biologically implausible explanations such as the 'production line hypothesis'.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验