Sonnichsen D S, Relling M V
Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis Tennessee.
Clin Pharmacokinet. 1994 Oct;27(4):256-69. doi: 10.2165/00003088-199427040-00002.
Paclitaxel is a new anticancer agent showing significant promise as therapy for solid tumours and leukaemia, given alone or in combination with other chemotherapeutic agents. Paclitaxel concentrations in biological specimens can be measured using high performance liquid chromatography, or more recently by immunoassay. Pharmacokinetic studies in which adults have been administered pacliaxel intravenously over 1 to 96 hours have demonstrated the following pharmacokinetic characteristics: extensive tissue distribution; high plasma protein binding (approximately 90 to 95%); variable systemic clearance, with average clearances ranging from 87 to 503 ml/min/m2 (5.2 to 30.2 L/h/m2); and minimal renal excretion of parent drug (< 10%). In vitro and in vivo studies have demonstrated that paclitaxel is extensively metabolised by the liver to 3 primary metabolites. Cytochrome P450 enzymes of the CYP3A and CYP2C subfamilies appear to be involved in hepatic metabolism of paclitaxel. Although early reports suggested that paclitaxel has first-order pharmacokinetics, some recent trials in children and adults suggest that its elimination is saturable. The clinical importance of saturable elimination would be greatest when large dosages are administered and/or the drug is infused over a shorter period of time. In these situations, achievable plasma concentrations are likely to exceed the affinity constant for elimination (Km). Thus, small changes in dosage or infusion duration may result in disproportionately large alterations in paclitaxel systemic exposure, potentially influencing patient response. A pharmacokinetic analysis of the combination of cisplatin and paclitaxel has demonstrated that paclitaxel clearance is apparently sequence dependent. Patients administered cisplatin prior to paclitaxel had lower clearances and greater clinical toxicity than patients receiving paclitaxel before cisplatin. Additional pharmacodynamic analyses have shown nonhaematological and haematological toxicity to correlate better with parameters of paclitaxel exposure (e.g. area under the plasma concentration-time curve, duration of plasma concentrations exceeding 0.1 mumol/L) than with the administered dosage.
紫杉醇是一种新型抗癌药物,单独使用或与其他化疗药物联合使用时,对实体瘤和白血病的治疗显示出巨大前景。生物样本中的紫杉醇浓度可使用高效液相色谱法进行测定,或者最近也可通过免疫测定法进行测定。在针对成人进行的长达1至96小时静脉注射紫杉醇的药代动力学研究中,已证实了以下药代动力学特征:广泛的组织分布;高血浆蛋白结合率(约90%至95%);全身清除率可变,平均清除率范围为87至503毫升/分钟/平方米(5.2至30.2升/小时/平方米);母体药物经肾脏排泄极少(<10%)。体外和体内研究均表明,紫杉醇在肝脏中广泛代谢为3种主要代谢产物。CYP3A和CYP2C亚家族的细胞色素P450酶似乎参与了紫杉醇的肝脏代谢。尽管早期报告表明紫杉醇具有一级药代动力学特征,但最近一些针对儿童和成人的试验表明其消除具有饱和性。当大剂量给药和/或药物在较短时间内输注时,饱和消除的临床重要性最为显著。在这些情况下,可达到的血浆浓度可能会超过消除的亲和常数(Km)。因此,剂量或输注持续时间的微小变化可能会导致紫杉醇全身暴露量出现不成比例的大幅改变,从而可能影响患者的反应。顺铂和紫杉醇联合用药的药代动力学分析表明,紫杉醇的清除率显然取决于给药顺序。先给予顺铂再给予紫杉醇的患者,其清除率较低,临床毒性也比先接受紫杉醇再接受顺铂的患者更大。额外的药效学分析表明,非血液学和血液学毒性与紫杉醇暴露参数(例如血浆浓度-时间曲线下面积、血浆浓度超过0.1微摩尔/升的持续时间)的相关性比与给药剂量的相关性更好。